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With satisfactory validation by experimental data, we perform computational 21 

fluid dynamic(CFD) simulations with the standard k- model to investigate how 22 

NO-NO2-O3 photochemistry and turbulent mixing influence reactive pollutant 23 

dispersion and vehicular NOx exposure in 21-row(neighborhood-scale~1km) 24 

three-dimensional(3D) medium-dense urban models with an approaching wind 25 

parallel(perpendicular) to the main(secondary) streets. Personal intake fraction P_iF 26 

and its spatially-averaged values for the entire building (i.e. building intake fraction 27 

<P_iF>B) are adopted for reactive/passive exposure analysis with/without 28 

NOx-O3-photochemistry.  29 

Some meaningful findings are proposed: 1) There are flow adjustment processes 30 

coupling turbulent mixing and chemical reactions through urban areas(i.e. secondary 31 

Street 1 to 20). NO-NO2-O3 photochemistry induces O3 depletion and NO conversion 32 

into NO2 producing significant increase in NO2 exposure and slight decrease in NO 33 

exposure compared with passive dispersion. 2) With span-wise NOx sources, Street 10 34 

in the fully-developed region experiences weaker wind and subsequently greater 35 

<P_iF>B(0.207ppm) than Street 3(0.135ppm) in the upstream flow-adjustment region. 36 

<P_iF>B descends exponentially from the target building toward downstream, and 37 

Street 10 experiences quicker decay rates. 3) With stream-wise NOx sources along the 38 

main street, <P_iF>B first ascends, then reaches equilibrium values 39 

(e.g.0.046-0.049ppm for passive). 4) If background O3 concentration [O3] rises from 40 

20ppbv to 40 and 100ppbv, more NO is oxidized by O3 to generate NO2. As 41 

[O3]=20ppbv, if NO-NO2 emission ratio decreases from 10 to 5, NO2 exposure is 42 
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partly offset but NO exposure change little. Present methodologies are confirmed 43 

effective to investigate impacts of more complicated meteorological conditions and 44 

chemical mechanisms on exposure in urban districts. 45 

 46 

Keywords: NO-NO2-O3 photochemistry; reactive pollutant dispersion; personal 47 

intake fraction (P_iF); building intake fraction (<P_iF>B); computational fluid 48 

dynamic (CFD) simulation; three-dimensional (3D) urban models  49 

 50 

1. Introduction 51 

Following the ongoing urbanization worldwide, vehicular pollutant emissions 52 

have become one of the major sources in urban air pollution[1-3]. Heavy traffic flows, 53 

compact urban configurations and unfavorable meteorological conditions are the main 54 

reasons of large pollutant exposure and adverse health impacts on city dwellers[4]. On 55 

average, people spend more than 90% of their time indoors. Outdoor air pollutants in 56 

urban areas can penetrate into indoor via doors, windows, building cracks and other 57 

ventilation duct systems[5-7]. Particularly, vehicular pollutant exposure to urban 58 

residents living near busy roads should be paid more attention, because they suffer 59 

from higher health risks than other urban microenvironments[7-10]. Apart from 60 

reducing vehicular pollutant emissions, sustainable urban design with better 61 

understanding the influence of urban layouts and atmospheric conditions on the flow 62 

and passive/reactive pollutant dispersion in urban areas can help enhancing pollutant 63 
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dilution and mitigating traffic-related pollutant exposure[11-15]. 64 

As reviewed by the literature[16-29], in the past decades, a number of 65 

computational fluid dynamic (CFD) simulations, outdoor field observations and wind 66 

tunnel experiments have been widely performed to clarify turbulent flow 67 

characteristics and pollutant dispersion in urban models from street-scale (~100m) to 68 

neighborhood-scale (~1km). Street aspect ratios (H/W) are reported as the most key 69 

urban parameters in two-dimensional (2D) street canyons[16-18, 25-26, 29-32]. 70 

Realistic urban districts are usually three-dimensional (3D) with pollutant exchange 71 

across street roofs and lateral/stream-wise urban boundaries. Generally, the building 72 

planar area index p (i.e. the ratio between the planar area of buildings viewed from 73 

above and the total floor area) and the frontal area index f (i.e. the ratio of the frontal 74 

area of buildings to the total floor area) are typical building packing density indexes 75 

and key parameters of 3D urban areas[33-38]. Moreover, other significant factors 76 

have been also verified, such as building height variations[38-40], ambient wind 77 

directions[40-41], elevated building design[42-44], tree planting[46-49] etc. In 78 

addition, thermal stratification and buoyancy forces induced by wall heating and solar 79 

shading also significantly influence or dominate the flow and pollutant dispersion if 80 

wind speed is relatively small and Richardson number is large[50-56].  81 

Recently, several researches[7, 44, 57] introduce personal intake fraction (P_iF) 82 

to quantify street-scale pollutant exposure induced by vehicle emissions. In contrast to 83 

population intake fraction (IF) for a specific population[4, 58], P_iF is independent of 84 

population density and size which represents the fraction of pollutants inhaled 85 
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averagely by each person of a population to the total pollutant emissions. For example, 86 

1ppm (part per million or 10-6) means the inhalation of 1mg pollutants if 1kg 87 

pollutants being emitted. By performing CFD simulations validated by experimental 88 

data, Hang et al.[7] estimated spatial mean P_iF (i.e. < P_iF >~1-5ppm) of passive 89 

pollutant (i.e. CO) in shallow 2D street canyons (H/W=0.5-1). Later, < P_iF > in 3D 90 

urban district models were confirmed one order smaller (~0.1ppm) than 2D models 91 

with similar aspect ratios (H/W=0.5-1)[41, 57]. 92 

Besides the dynamic dispersion of passive pollutants, there are chemical 93 

processes of reactive pollutants in urban streets, such as the NOx-O3 photochemistry 94 

[59-64], NOx-O3-VOCs chemical mechanisms[65-69] etc. Among them, the impacts 95 

of different heating scenarios and building configurations on reactive dispersion are 96 

extensively investigated through LES or RANS approaches, such as various shading 97 

settings[61], wall heating scenarios[60, 62], aspect ratios[63] etc. However, most 98 

studies so far mainly examine reactive pollutant dispersion in 2D street canyons while 99 

investigations on reactive pollutant dispersion and the related exposure in 3D urban 100 

models are still rare. Therefore, this study incorporates NO-NO2-O3 chemistry into 101 

CFD simulations and numerically investigates reactive pollutant dispersion and 102 

exposure in urban models. As a start, the impacts of various ground-level source 103 

locations and reactant proportions (NO:NO2:O3) in 3D medium-dense urban models 104 

(H/W=1, p=f=0.25) are studied under neutral meteorological conditions.  105 

The sketch of this paper is organized as follows: Section 2 introduces the indexes 106 

for pollutant dispersion and exposure. Section 3 illustrates model setups and all test 107 
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cases in CFD simulations. Section 4 presents the flow and pollutant dispersion 108 

validations by wind tunnel data. Section 5 shows results and discussions, and Section 109 

6 draws the conclusions. 110 

 111 

2. Indexes for pollutant dispersion and exposure 112 

2.1 Personal intake fraction (P_iF) and building intake fraction (<P_iF>B) 113 

Population intake fraction (IF) and personal intake fraction (P_iF) are effective 114 

indexes to quantify vehicular pollutant exposure in local streets or neighborhoods[41, 115 

44, 57]. Both exposure indexes are defined as Eq. (1):           116 

IF= ∑ ∑ Pi×Bri,j×Δti,j×Cej/m
•M

j
N
i                          (1a) 117 

                          P_iF=IF/ ∑ Pi
M
j                                  (1b) 118 

where, N and M are the number of age groups and microenvironments, Pi represents 119 

the population size for the age group i, Bri,j (m3/s) and ∆ti,j (s) are the average 120 

breathing rate and the individual time spent for the ith age group in the jth 121 

microenvironment, Cej (kg/m3) denotes pollutant concentration in microenvironment j 122 

and m
•
 (kg) means total emissions released from vehicles. It is worth mentioning that 123 

P_iF is independent of pollutant release rates as well as population density and size, 124 

but can be influenced by building configurations, meteorological conditions and 125 

pollutant source settings etc. 126 

According to the literature[4, 70-71], the population data are categorized into 127 
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three subgroups(N=3, Fig. 1a): Children(21.2%), Adults(63.3%) and Elders(15.5%). 128 

Moreover, the time activity patterns for each subgroup are divided into four 129 

microenvironments(M=4, Fig. 1b): indoors at home(j=1), other indoor locations(j=2), 130 

in or near vehicles(j=3), and other outdoor locations(j=4). Table 1 lists activity time 131 

patterns and breathing rates in each subgroup for indoors at home(j=1). In this study, 132 

all present building models are supposed to residential type and only j=1 (indoors at 133 

home) is adopted to calculate P_iF [44, 57]. Especially, the area-averaged P_iF of the 134 

building wall surface is denoted as wall intake fraction(<P_iF>W). The 135 

spatially-averaged P_iF of the entire building surfaces is represented as building 136 

intake fraction(<P_iF>B), which means the fraction of total traffic emissions inhaled 137 

averagely by each person living in this roadside building.  138 

 139 

2.2 Photostationary state defect (dps, unit: %) 140 

Referring to previous researches[59-60], the photostationary state defect (dps) is 141 

an effective indicator to measure the departure degree from photochemical 142 

equilibrium and can be expressed in the following form: 143 

dps= (
k1[NO][O3]

JNO2
[NO2]

-1) ×100                          (2) 144 

here, k1[NO][O3] and JNO2
[NO2] represent the depletion and generation rates of 145 

ozone. dps is positive value if ozone depletion rate greater than its formation rate, and 146 

vice versa. Especially, dps equals zero when chemical reactions reach equilibrium 147 

state. 148 
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 149 

3. CFD setups and case descriptions  150 

3.1 Numerical approaches 151 

With advances in computer technologies, CFD as a powerful modelling tool has 152 

been widely employed to reproduce turbulent flow structure as well as to predict 153 

pollutant dispersion and transport in urban districts. Though large eddy simulations 154 

(LES) have been confirmed to be more accurate in predicting turbulence than 155 

Reynolds-Averaged Navier-Stokes (RANS) models[27, 73-75], RANS approaches are 156 

still extensively used, since LES models require expensive computational expenses 157 

and have challenges in selecting sub-grid scale models and specifying appropriate 158 

boundary conditions. Moreover, among the RANS models (e.g. various k-ε and k- 159 

models), the standard k-ε model shows good agreements with experimental data and 160 

has been widely adopted[7-8, 37-38, 45, 57-58, 76-79], although it has limitations in 161 

predicting turbulent kinetic energy in strong-wind regions. Therefore, by considering 162 

model performance and computational loads, the standard k-ε model is selected to 163 

solve the steady-state isothermal flow field. The governing equations for the flow and 164 

turbulent quantities implemented are as below[80]: 165 

The mass continuity equation: 166 

                        
∂uj

∂xj
=0                           (3) 167 

The momentum equation: 168 
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uj
∂ui

∂xj
=-

1

ρ

∂p

∂xi
+

∂

∂xj
(ν

∂ui

∂xj
-ui

'uj
')             (4) 169 

The transport equations of turbulent kinetic energy (k) and its dissipation rate (ε): 170 

ui
∂k

∂xi
=

∂

∂xi
[(ν+

νt

σk
)

∂k

∂xi
] +Pk-ε                (5) 171 

ui
∂ε

∂xi
=

∂

∂xi
[(ν+

νt

σε
)

∂ε

∂xi
] +Cε1

ε

k
Pk-Cε2

ε2

k
            (6) 172 

where, uj  is mean velocity components (ūj=u̅, v̅, w̅ as j=1, 2, 3); ν and νt=Cμ
k

2

ε
 173 

(Cμ=0.09) represent the kinematic viscosity and the eddy viscosity, respectively; the 174 

Reynolds stress tensor -ui
'uj

' and the turbulence production term Pk are defined as: 175 

-ui
'uj

'=νt (
∂ūi

∂xj
+

∂ūj

∂xi
) -

2

3
kδij                    (7) 176 

Pk=νt×
∂ui

∂xj
(

∂ui

∂xj
+

∂uj

∂xi
)                     (8) 177 

Note that δij is the Kronecker delta whose value is 1 when i=j and otherwise is 0. 178 

The NOx-O3 simple photochemical mechanism is described as follows[59-60]: 179 

NO2 + hv → NO + O  ,                  JNO2
               (9a) 180 

O + O2 + M → O3 + M  ,                k2                 (9b) 181 

O3 + NO → NO2 + O2  ,                 k1                (9c) 182 

Here, M denotes a third molecule, for example O2 or N2, to absorb excess energy and 183 

stabilize O3 molecule formed;  JNO2
, k2 and k1 represent rate constant for each 184 

reaction, respectively. Since the oxygen atom (O) is highly reactive, it combines 185 

rapidly with O2 once O is produced from NO2 photolysis. This is so-called 186 

pseudo-steady-state approximation that the depletion and production rates of O3 are 187 
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nearly equal[81]: 188 

  k2[O][O2][M]=JNO2
[NO2]                           (10) 189 

Therefore, Eq. (9a) is the rate control step for O3 formation. Based on the above 190 

assumption, the transport equations for reactive pollutants can be defined as[59-60]: 191 

uj
∂[NO]

∂xj
=Dm

∂
2[NO]

∂xj∂xj
+

∂

∂xj
(De

∂[NO]

∂xj
) +JNO2

[NO2]-k1[O3][NO]+SNO    (11a) 192 

uj

∂[NO2]

∂xj
=Dm

∂
2[NO2]

∂xj∂xj
+

∂

∂xj
(De

∂[NO2]

∂xj
) -JNO2

[NO2]+k1[O3][NO]+SNO2
    (11b) 193 

uj

∂[O3]

∂xj
=Dm

∂
2[O3]

∂xj∂xj
+

∂

∂xj
(De

∂[O3]

∂xj
) +JNO2

[NO2]-k1[O3][NO]           (11c) 194 

where, Dm and De are the molecular and eddy diffusivity; the third terms on the 195 

right-hand side of Eq. (11) represent chemical reaction term; SNO and SNO2
denote the 196 

source terms of NO and NO2; the Schmidt number Sct=νt/De is specified as 0.7[33, 39, 197 

46, 48, 78]. Furthermore, the photolysis rate JNO2
and rate constant k1 are calculated by 198 

[59-60]: 199 

JNO2
=8.14×10

-3 {0.97694+8.3700×10
-4(T-273.15)+4.5173×10

-6
×(T-273.15)

2

}  (12a200 

)                          201 

k1=4.405×10
-2

exp(-
1370

T
)                       (12b) 202 

Here, T is temperature in K; the units of JNO2
 and k1 are s-1 and ppbv-1s-1. 203 

Additionally, the temperature-dependent rate constant is not considered in isothermal 204 

flow of this study, thus JNO2
 and k1 are 8.1×10-3 s-1 and 4.450×10-4 ppbv-1s-1 by 205 

assuming reactive pollutants undergo chemical processes under the isothermal 206 

condition with a fixed T of 298.15K. 207 
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All governing equations(Eqs. (3-6, 11)) are discretized by a finite volume 208 

method (FVM) with the second-order upwind scheme. The SIMPLE algorithm is 209 

employed for pressure and velocity coupling. The under-relaxation factors for 210 

pressure, momentum, k and ε terms are specified as 0.3, 0.7, 0.8 and 0.8. Numerical 211 

simulation does not stop until the absolute residuals of all variables are less than 10-6. 212 

 213 

3.2 Three-dimensional (3D) urban model setups in CFD  214 

The building layouts, as depicted in Fig. 2a, are based on the idealized 3D 215 

medium-dense urban clusters (i.e. street aspect ratio H/W=1; building packing density 216 

p=f=0.25). To better illustrate model configurations, x, y and z are described as the 217 

stream-wise, span-wise and vertical directions, respectively. The cubic building 218 

models(H=B=30m) with a uniform spacing(Ws=Wm=30m) are constructed in x and y 219 

directions. Moreover, the approaching wind is parallel to the main streets(x direction) 220 

and perpendicular to the secondary streets(y direction). x/H=0 means the cross section 221 

in windward street opening and y/H=0 denotes the central cross section of the main 222 

street (Fig. 2c).  223 

As verified by the literature[38-40, 82-83], the airflow in the middle column is 224 

hardly affected by lateral boundaries if the lateral width of the urban model is 225 

sufficiently large. Hence, only half of the middle column with two lateral symmetry 226 

boundaries are considered during CFD simulations to reduce computational efforts 227 

(Fig. 2b). Following the CFD guidelines[84-86], the distances between urban 228 
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boundaries and the domain top, domain inlet, domain outlet are 9H, 6.7H and 32.3H, 229 

respectively. Furthermore, the zero normal gradient boundary condition is adopted at 230 

two lateral boundaries and the domain top (i.e. symmetry) and the domain outlet (i.e. 231 

outflow). Several recent studies[5-6, 8-9, 44, 57-58] reported that, pollutant 232 

concentration on the wall surfaces of near-road buildings can be treated as indoor 233 

concentration originated from outdoor pollutants since the indoor/outdoor (I/O) ratio 234 

of pollutant concentration is nearly one for naturally-ventilated buildings[5, 72]. 235 

Therefore, by assuming all present building models are naturally-ventilated type, the 236 

flow and pollutant dispersion within indoor space of buildings are not taken into 237 

account to reduce the grid numbers and computational costs in CFD simulations. The 238 

literature have applied such technique to effectively quantify vehicular pollutant 239 

exposure in 2D street canyons or 3D urban models[5-6, 8-9, 44, 57-58]. 240 

For the domain inlet, the power-law time-averaged velocity profile U0(z) in the 241 

upstream free flow is adopted (Eq. 13a)[40-41, 57, 82-83] which is scaled to that in 242 

wind tunnel experiments[87]. Base on the CFD guideline[84-86], vertical profiles of 243 

k(z) and (z) are given by Eqs. (13b-c): 244 

U0(z)=Uref×(z/H)
0.16

                      (13a) 245 

k(z)=u*
2/√Cμ                       (13b) 246 

ε(z)=Cμ
3/4

k
3/2

/(κvz)             (13c) 247 

where, Uref is the reference velocity at the building height in upstream free flow 248 

(Uref=3.0 m/s at z =H); the friction velocity u*=0.24m/s[40-41, 57, 82-83]; von 249 
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Karman constant 𝜅𝑣 =0.41,  Cμ =0.09. Furthermore, vertical profiles of Eq. (13) 250 

represent neutral atmospheric boundary layer with a full-scale surface roughness 251 

z0=0.1m[93] and have been adopted in previous studies[40-41, 57, 82-83].  252 

In addition, Fig. 2c demonstrates the overhead and lateral views of mesh 253 

distribution for test cases. The minimum grid size of 0.2 m near the wall surfaces and 254 

the stretching ratio between adjacent grids of 1.15 (about 3.2 million hexahedral cells) 255 

are applied to ensure sufficiently fine grid at the pedestrian level (0-1.5m) and near 256 

building surfaces. As the normalized distance y+ (y+=yuτ/ν) ranges from 30 to 600 at 257 

most regions of wall surfaces, standard wall function with no slip boundary condition 258 

is set on all wall surfaces. According to the literature[13, 40, 88-89], a specific 259 

roughness modification is assigned to the upstream and downstream ground to obtain 260 

a horizontally homogeneous ABL surrounding urban regions. Especially, the grid 261 

independence tests are presented later in subsection 4.1.  262 

 263 

3.3 Pollutant source settings and model description of test cases  264 

Three kinds of pollutant source locations are considered in this study, i.e. the 265 

span-wise (y direction) emission sources in the 3rd or 10th secondary street is denoted 266 

as S3 and S10 (Fig. 3a-b), and the stream-wise (x direction) emission sources along 267 

the main street is represented by Sm (Fig. 3c). The reactive pollutants involved in 268 

present photochemistry are NO, NO2 and O3. Among them, NOx is assumed to be 269 

emitted from vehicles into the street canyon while background O3 concentration is 270 
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specified at the domain inlet and entrained by approaching wind into urban districts. 271 

The background concentrations for NO and NO2 at the domain inlet are zero in this 272 

study. Following the literature[59-60], typical automobile emission ratio of NO to 273 

NO2 ( RNO/NO2
) of 10 is adopted. NO and NO2 are released from the lowest grid cell 274 

(z=0-0.2m) at rates of 100 and 10 ppbv s-1, which corresponds to emission strengths 275 

of 1.227×10-7 and 1.88×10-8 kg m-3s-1 (P=1 atm, T=298.15K). For S3 or S10 sources, 276 

as the street width (Ws) is 30m, this NOx emission intensity of 849 μg m-1s-1 is 277 

equivalent to a traffic volume of about 6100 vehicles per hour when considering a 278 

NOx emission of 0.5g km-1 per vehicle[59-60]. Particularly, we are mainly concerned 279 

with the proportion among NO and NO2 rather than the assigned emission rate for 280 

each vehicular pollutant.  281 

Furthermore, four O3 background concentrations (i.e. [O3] =1, 20, 40 and 100 282 

ppbv) with  RNO/NO2
=100:10 are investigated to study the effects of different [O3] on 283 

reactive dispersion. In addition, Carslaw[90] verified that there is an increasing 284 

NO2/NOx emission ratio in road traffic emissions referring to observation in real cities. 285 

Thus, three emission ratios of NO to NO2 (i.e. RNO/NO2
=100:10, 50:10 and 100:20) 286 

with [O3]=20ppbv are considered to examine the impacts of various  RNO/NO2
on 287 

reactive pollutant dispersion.  288 

Overall, total 11 test cases are described as Case P [Source,  RNO/NO2
] or Case R 289 

[Source, RNO/NO2
, [O3]] and summarized in Table 2. Here ‘P’ means passive dispersion 290 

without chemical reactions, ‘R’ denotes reactive dispersion with NO-NO2-O3 291 

chemistry; ‘Source’ contains three pollutant source locations, i.e. S3, S10 and Sm, 292 
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respectively;  RNO/NO2
represents the emission ratios of NO to NO2; [O3] is 293 

background O3 concentration (mole fraction, unit: ppbv).  294 

 295 

4 Validation study of flow and pollutant dispersion in 3D urban models 296 

4.1  Flow validation by wind tunnel data 297 

In this subsection, the performances of various steady k-ε models (standard, 298 

RNG and Realizable) with standard wall function are evaluated by wind tunnel data. 299 

Moreover, the grid independence tests are also implemented.  300 

As shown in Fig. 4a-b, idealized 3D urban models in wind tunnel experiment[87] 301 

consist of 7 rows and 11 columns of regularly-aligned cubic buildings 302 

(H=B=W=15cm). Vertical profiles of velocity components (u̅, w̅) and turbulence 303 

kinetic energy (k) are measured at points of Vi (i=1-6), which are central positions in 304 

the ith secondary street located at y/H=1 and x/H=1.5H, 3.5H, 5.5H, 7.5H, 9.5H, 305 

11.5H respectively (Fig. 4a-b).  306 

In CFD validation study, the similar full-scale model configurations 307 

(H=B=W=30m, Fig. 4c) are reconstructed with the scale ratio of 200:1 to 308 

wind-tunnel-scale models. Moreover, all CFD setups including computational 309 

domains, boundary conditions and convergence criteria in this full-scale CFD 310 

validation study are similar with those in subsection 3.2 except that the distance 311 

between urban boundaries and domain outlet is 40.3H(Fig. 4c). Based on the building 312 

height(H=0.15m or 30m) and reference velocity(Uref =3m/s), the reference Reynolds 313 
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number Re=
UrefH

ν
≈30000  and 6×106 for wind-tunnel-scale and full-scale urban 314 

models, which are much larger than 11000 satisfying Reynolds number independence 315 

requirement. Furthermore, Fig. 4d depicts the coarse, medium and fine grid 316 

arrangements with hexahedral cells of about 1, 2 and 3.3 million and the minimum 317 

grid size of 0.4m, 0.2m and 0.1m, respectively. 318 

Fig. 5 first shows results of grid independence test at V1(Fig. 5a-b), then depicts 319 

vertical profiles of time-averaged stream-wise velocity u̅(z) at Points V1, V4 and V6 320 

(Fig. 5c-e), vertical velocity w̅(z) (Fig. 5f) and turbulence kinetic energy k(z) (Fig. 5g) 321 

at Point V1 between numerical results and experimental data. There is little difference 322 

in numerical results between the coarse, medium and fine grid, and thus medium grid 323 

is selected for case studies to reduce computational loads. Besides, the standard k-ε 324 

model with the medium grid shows better agreements with wind tunnel data than the 325 

RNG and Realizable k-ε models. 326 

To further quantify the modeling accuracy and reliability of the standard k– 327 

model with the medium grid arrangement, several statistical performance metrics are 328 

applied, including the mean value, the standard deviation, the factor 2 (FAC2), the 329 

normalized mean square error (NMSE), the fraction bias (FB) and the correlation 330 

coefficient (R)[91]. Among which, the closer NMSE value to zero, the smaller 331 

difference between experiment data and CFD results; FAC2 value larger than one 332 

means over-prediction against experiment data while smaller than one represents 333 

under-prediction; Similarly, the negative and positive FB values denote 334 

overestimation and underestimation. Results of u̅(z) at Points V1, V4 and V6 as well 335 
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as w̅(z) and k(z) at Point V1 are listed in Table 3. Referring to COST Action 732’s 336 

recommended criteria[91], a credible CFD model should satisfy the following 337 

statistical metrics standards: 0.5≤FAC2≤2, NMSE≤1.5 and -0.3≤FB≤0.3. 338 

Overall, metrics lie in the recommended criteria, particularly values of u̅(z) meet 339 

well. However, values of w̅(z) and k(z) reveal relatively poorer performance than 340 

those of u̅(z), which is largely attributed to the limitation of the standard k-ε model. 341 

Conclusively, the validation study shows that present CFD methodologies applying 342 

standard k-ε model with medium grid have credible numerical accuracy in predicting 343 

urban turbulent flow and can be employed for further case studies. 344 

 345 

4.2 Validation of pollutant dispersion by wind tunnel data 346 

Experimental and numerical studies have been extensively performed to 347 

investigate passive pollutant dispersion in the idealized street canyons. Unfortunately, 348 

there are currently little experimental data to directly validate the present CFD model 349 

coupled with chemistry[59-60, 63-64]. However, the reactive pollutants considered in 350 

this paper are effectively passive and can be divided into two subsets, i.e. total 351 

nitrogen oxide (NOx=NO+NO2) and total oxidant (OX=NO2+O3), since reactions (Eq. 352 

9) interconvert NO with NO2, and O3 with NO2 but without redundant productions. In 353 

addition, the chemical reaction terms cancel out when Eqs. (11a-b) and Eqs. (11b-c) 354 

are added, which indicates that the transport and dispersion of NOx and OX can be 355 

deemed as passive scalar. Consequently, in this subsection, Standard k-ε model with 356 



 18 

standard wall function has been implemented and validated against wind tunnel 357 

experiment to evaluate the reliability of numerical simulation in predicting passive 358 

pollutant distribution. 359 

The configurations of the wind tunnel measurement[92], as depicted in Fig.6a-b, 360 

are consisted of nine rectangular building models (Lx=27.6cm, Ly=18.4cm, H=8cm) 361 

with three rows and three columns (3×3) and uniform street widths (W=8cm, H/W=1). 362 

Moreover, tracer gas(C2H6) is released from a line source (0.5cm in width, dx and 363 

18.4 cm in length, Ls) at a velocity of wsource=0.01 m/s which is paralleled with y 364 

direction and locates in the central street canyon in front of building No.2(Fig. 6a-b). 365 

Furthermore, C2H6 concentration profiles are measured in the middle of leeward and 366 

windward walls near the line source as well as on the central line of roof surface in 367 

the building No.2(Fig. 6a-b).  368 

In full-scale pollutant dispersion validation study, similar model configurations 369 

(Lx=138m, Ly=92m, H=40m, in Fig. 6c) are rebuilt with the scale ratio of 500:1 to 370 

wind-tunnel-scale models. CFD setups are similar with subsection 3.2, but the 371 

distances between urban boundaries and the domain top, domain side, domain inlet, 372 

domain outlet are 9H, 5H, 5H and 15H, respectively. The approaching wind is parallel 373 

to the main streets(x direction) and perpendicular to the secondary streets(y direction). 374 

Furthermore, vertical profiles of stream-wise velocity u̅(z), turbulence kinetic energy 375 

k(z) and turbulent dissipation rate ε(z) fitted by measured data in wind tunnel 376 

experiments[92] are adopted at the domain inlet (Fig. 6d-f). In addition, to compare 377 

CFD results with measured data, the normalized C2H6 concentration K is defined as 378 
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below: 379 

K=CHUref /wsourcedx                        (14) 380 

Here the height of building (H), the reference velocity (Uref) and the line source 381 

emission strength (wsource, dx) are applied. 382 

As shown in Fig. 7, the agreements of K between wind tunnel data and CFD 383 

results are well confirming the standard k-ε model has sufficient modeling accuracy in 384 

predicting passive pollutant dispersion within 3D urban district models. 385 

 386 

5 Results and discussion 387 

5.1 Flow patterns in 3D urban district models 388 

Fig. 8a depicts velocity distribution in the plane of z=1.5m (the pedestrian level). 389 

Obviously, the flow adjustment process can be observed through the entire building 390 

clusters, in which wind speed decreases toward downstream from Street 1 to Street 6, 391 

and then reaches a comparatively flow equilibrium from Street 7 to Street 18. Fig. 392 

8b-c further depict velocity magnitude and 2D streamlines in the plane of y=30m (the 393 

center plane of the target street canyon) and z=1.5m for Street 3 and Street 10. 394 

Moreover, the corresponding 3D streamlines are displayed in Fig. 8d. For both street 395 

units, 3D downward helical vortices are produced inside the secondary streets (Fig. 396 

8b-d). The lateral flow direction near street ground (i.e. z=1.5m) are from the 397 

secondary streets to the main streets and from the downwind building (No.4 and 11) 398 
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to upwind building (No. 3 and 10) (Fig. 8c). In addition, Street 3 apparently 399 

experiences greater wind speed than Street 10.  400 

In particular, the following analysis (subsection 5.3) emphasizes more on 401 

reactive pollutant dispersion in the fully-developed region (e.g. Street 10) than the 402 

flow-adjust region (e.g. Street 3). 403 

 404 

5.2 Impacts of source locations (S3, S10 and Sm) on reactive pollutant dispersion  405 

This subsection considers the impacts of source locations (i.e. S3, S10 and Sm in 406 

Fig. 3) on reactive pollutant dispersion(with chemical reactions, R-type) under the 407 

specific pollutant proportion (i.e. RNO/NO2
=100:10, [O3]=20ppbv). Because the present 408 

photochemical mechanism contains the interconversion of nitrogen oxides(i.e. 409 

NOx=NO+NO2) and oxidants (i.e. OX=NO2+O3), The following discussions 410 

(subsection 5.2 and 5.3) concentrate more on NO2 to simplify analysis. Moreover, 411 

passive dispersion (without chemical reactions, P-type) are also presented to 412 

investigate the sole role of turbulent mixing.  413 

 414 

5.2.1 NO2 concentration distribution in 3D urban-like models 415 

Fig. 9a-d exhibit NO2 concentration between P-type(passive, left) and R-type 416 

(reactive, right) cases in y=30m and z=1.5m for Street 3 and 10 fixed with span-wise 417 

sources(i.e. S3 and S10). Moreover, Fig. 9e compares NO2 concentration at the 418 



 21 

pedestrian level between passive and reactive cases with NOx sources along main 419 

streets (i.e. Sm). For passive dispersion with S3 or S10 sources (P-type), due to source 420 

emissions and turbulent transports, NO2 concentration near the upwind building (No.3 421 

and 10) is higher than that near the downwind building(Fig. 9a-b). Furthermore, a 422 

large amount of NO2 pollutants accumulate in the intersection of main street and 423 

secondary street(Fig. 9c-d). In an overall view, NO2 concentration in Street 10 is 424 

slightly higher than Street 3. For P-type case with Sm sources(Fig. 9e), NO2 425 

concentration first rises toward downstream streets, then reaches an approximate 426 

equilibrium from Street 7 to 18. Such findings are similar with the flow adjustment as 427 

discussed in subsection 5.1.  428 

With chemical reactions, as verified by Fig. 9, NO2 concentration in R-type cases 429 

considerably exceeds that in P-type cases. Oppositely, passive NO concentration is 430 

higher than that in R-type cases.  431 

 432 

5.2.2 dps distribution in Street 3 and 10 433 

Fig. 10 shows dps distribution in y=30m and z=1.5m in local target streets with 434 

S3 and S10 sources. Here, the distribution of photostationary state defect(dps) is 435 

emphasized below the roof level (z/H<1) and toward downstream domains (i.e. x/H>5 436 

and x/H>19 for Street 3 and 10, respectively). 437 

As introduced in subsection 2.2, smaller dps value represents the less departure 438 

degree from photochemical equilibrium. In the centre plane of secondary streets 439 
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(y=30m, Fig. 10a), the local small dps values emerge near the roof of the upwind 440 

building (No.3 and 10) while the large dps values appear near the roof of the 441 

downwind building (No.4 and 11) and the ground level close to NOx emissions. At the 442 

pedestrian level(Fig. 10b), downstream areas of the main streets (x/H>6 and x/H>20) 443 

experience small dps values while the junction regions of the main street and 444 

secondary street near NOx source locations obtain large dps values, particularly in 445 

Street 3. In summary, dps value is usually smaller in regions with weaker wind and 446 

turbulence, where reactive pollutants have more time to mix and react.  447 

 448 

5.2.3 Concentration, <P_iF>W and <P_iF>B on building wall surfaces  449 

Based on spatial mean concentration at the entire building surfaces, we calculate 450 

wall intake fraction(<P_iF>W) and building intake fraction(<P_iF>B) to analyze 451 

overall vehicular pollutant(NOx) exposure in near-road buildings. Especially, 1ppm 452 

represents 1 mg inhaled averagely by each person living in the near-road building if 453 

1kg pollutants emitted out. 454 

Fig. 11a-b first compare NO2 concentration on the leeward and windward walls 455 

between P-type and R-type cases in target street units with S3 and S10 sources. No 456 

matter with or without chemical reactions, NO2 concentrations on the leeward wall 457 

are always higher than those on the windward wall. Once NOx-O3 photochemical 458 

reactions are conducted, an increase of NO2 concentration emerges on the upwind and 459 

downwind walls. Such results are similar with the aforementioned discussion in 460 
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subsection 5.2.1.  461 

Then, Table 4 lists <P_iF>W of NO and NO2 at leeward and windward walls 462 

adjoining target street in cases with S3 and S10 (positions as described in Fig. 3a-b). 463 

Obviously, in both P-type and R-type cases, <P_iF>W of NOx at leeward wall(Table 4, 464 

row 1-4, column 2-3) are greater than those at windward wall(Table 4, row1-4, 465 

column 4-5). Regarding P-type cases as the references, <P_iF>W of NO2 in R-type 466 

cases rise nearly 90%-160%, i.e. 0.660 to 1.372ppm and 0.853 to 1.643ppm at 467 

leeward wall for S3 and S10(Table 4, column 2), 0.180 to 0.473ppm and 0.230 to 468 

0.610ppm at windward wall for S3 and S10(Table 4, column 4); while <P_iF>W of 469 

NO reduces about 9%-16%, i.e. 0.660 to 0.588ppm and 0.853 to 0.775ppm at leeward 470 

wall for S3 and S10(Table 4, column 3), 0.180 to 0.151ppm and 0.230 to 0.193ppm at 471 

windward wall for S3 and S10(Table 4, column 5). Because NOx emission ratio 472 

released from vehicles is  RNO/NO2
=10, the present photochemical processes lead to a 473 

significant increase in NO2 exposure and a slight decrease in NO exposure. 474 

Furthermore, NO2 concentrations on the entire building wall surfaces with Sm 475 

sources are presented in Fig. 11c. Both P-type and R-type cases experience the NO2 476 

concentration adjustment processes toward downstream buildings. To quantify NOx 477 

exposure adjustments in P-type and R-type cases with various sources (S3, S10 and 478 

Sm), the horizontal profiles of building intake fraction <P_iF>B of NO and NO2 are 479 

shown in Fig. 12. It is found that <P_iF>B with S3 or S10 sources descends 480 

exponentially toward downstream buildings(Fig. 12a-b), instead, <P_iF>B with Sm 481 

sources first ascends quickly from building No.1 to 8, then reaches an approximate 482 
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equilibrium(Fig. 12c). Besides, R-type cases experience larger NO2 exposure than 483 

P-type cases, i.e. 0.420-0.108ppm against 0.135-0.020ppm for S3(Fig. 12a), 484 

0.605-0.160ppm against 0.207-0.030ppm for S10(Fig. 12b), 0.005-0.090ppm against 485 

0.002-0.049ppm for Sm(Fig. 12c). Oppositely, NO exposure in P-type cases are 486 

greater than R-type cases, i.e. 0.135-0.020ppm than 0.106-0.010ppm for S3(Fig. 12a), 487 

0.207-0.030ppm than 0.168-0.017ppm for S10(Fig. 12b) and 0.002-0.049ppm than 488 

0.002-0.045ppm for Sm(Fig. 12c).  489 

In addition, the decay function expressed in <P_iFn>
B

=a× <P_iFt>B
×e(t-n)/bis 490 

employed to further quantify the <P_iF>B decay processes from target building unit (t 491 

=4 or 11) toward downstream building (n=t to 21) in S3 and S10 cases. Note that, 492 

smaller decay factor b means relatively sharper descending processes of <P_iF>B 493 

curves. Table 5 summarizes the <P_iFt>B of building “No.t” and the exponential 494 

decay factors b in S3 and S10 cases. Obviously, compared with those in P-type case 495 

(b=7.46 and 3.96 in Table 5, row 1 and 3), R-type cases with S3 and S10 obtain larger 496 

b for NO2 (10.80 and 6.84 in Table 5, row 2 and 4) and smaller b for NO (5.92 and 497 

2.91). Moreover, <P_iF>B curves in S10 cases(Table 5, row 3-4) decline more 498 

sharply toward downstream regions than S3 cases(Table 5, row 1-2). Particularly, as 499 

shown in Fig. 12c, <P_iFt>B in Sm cases are calculated by the mean <P_iF>B from 500 

building No.9 to 21, i.e. 0.048ppm in P-type case, 0.044ppm and 0.088ppm in R-type 501 

case for NO and NO2.  502 

In summary, with  RNO/NO2
=100:10 and [O3] =20ppbv, the present NOx-O3 503 

titration interactions result in the production of NO2 and depletion of O3 and NO. By 504 
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focusing on <P_iFt>B values, NO2 exposure in R-type cases are greater than P-type 505 

cases about 3.1 times for S3, 2.9 times for S10 and 1.8 times for Sm while NO 506 

exposure in R-type cases are nearly 21%, 19% and 8% smaller than P-type cases for 507 

S3, S10 and Sm, respectively. 508 

 509 

5.3 Impacts of reactant proportions (NO:NO2:O3) on reactive pollutant dispersion 510 

In this subsection, based on S10 sources, we discuss the effects of different 511 

reactant proportions (NO:NO2:O3) on the interaction of turbulent mixing and 512 

photochemical processes in urban districts. Additionally, P_iF and <P_iF> are 513 

independent on source emission strength in passive pollutant dispersion, therefore 514 

Case P[S10,100:10] is treated as the reference case to compare with the cases with 515 

other reactant proportions. 516 

 517 

5.3.1 Impacts of O3 background concentration ([O3]) 518 

With the same emission ratio of NO to NO2 (i.e. RNO/NO2
=100:10), the impacts of 519 

four O3 background concentrations(i.e. [O3] =1, 20, 40 and 100ppbv) on reactive 520 

pollutant dispersion are examined. 521 

It is apparent that the formation of NO by photolyzing NO2 is slightly dominant in 522 

photochemistry when [O3] is 1ppbv. In contrast to the reference values(0.853 and 523 

0.230ppm in Table 4, row 3), <P_iF>W of NO2 at the leeward and windward walls 524 
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slightly decrease(i.e. 0.816 and 0.211ppm in Table 4, row 5) while <P_iF>W of NO 525 

increase a little(i.e. 0.858 and 0.233ppm). Besides, such phenomenon is distinctly 526 

observed in <P_iF>B curves(Fig. 13) between the reference case and Case R 527 

[S10,100:10,1], i.e. 0.207-0.030ppm against 0.187-0.020ppm for NO2(Fig. 13a) and 528 

0.207-0.030ppm against 0.209-0.031ppm for NO(Fig. 13b).  529 

However, if [O3] rises from 20ppbv to 40 and 100ppbv, more NO is oxidized by 530 

O3 to generate NO2. Based on the reference values (0.853 and 0.230ppm in Table 4, 531 

row 3), <P_iF>W of NO2 become about 1.9-5.2 times greater (1.643, 2.454 and 532 

4.442ppm in Table 4, column 2) at leeward wall and 2.6-6.7 times larger (0.610, 0.944 533 

and 1.534ppm in Table 4, column 4) at windward wall; while <P_iF>W of NO 534 

reduces approximately 9%-42% (0.775, 0.694 and 0.495ppm in Table 4, column 3) at 535 

leeward wall and 16%-57% (0.193, 0.159 and 0.100ppm in Table 4, column 5) at 536 

windward wall. Furthermore, Fig. 13 and Table 5 display the corresponding <P_iF>B 537 

curves, <P_iFt>B values and decay factors b under different [O3]. As depicted in Fig. 538 

13, compared with Case R[S10,100:10,20], Case R[S10,100:10,100] and R 539 

[S10,100:10,40] obviously attain much larger <P_iF>B of NO2 (1.573-0.275 and 540 

0.952-0.218ppm in Fig. 13a) and smaller <P_iF>B of NO (0.071-0.005 and 541 

0.133-0.011ppm in Fig. 13b). Additionally, both decay factors of NO2 and NO are 542 

smaller (b=6.02 and 2.33 for [O3]=40ppbv, b=4.74 and 1.87 for [O3]=100ppbv in 543 

Table 5, row 6-7) than those in Case R[S10,100:10,20] (b=6.84 and 2.91 in Table 5, 544 

row 4), which implies higher [O3] induces the quicker decay of <P_iF>B curves for 545 

NOx with S10 sources toward downstream building units. By concentrating on 546 
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<P_iFt>B, NO2 exposure in R-type cases surpass the reference case nearly 2.9, 4.6 and 547 

7.6 times for [O3]=20, 40 and 100ppbv, respectively(Table 5, column 2). 548 

Correspondingly, <P_iFt>B of NO in these [O3] cases are about 19%, 36% and 66% 549 

smaller than the reference values, respectively(Table 5, column 4). It clearly indicates 550 

that increasing [O3] would aggravate NO2 exposure within urban clusters but is 551 

conductive to the mitigation of NO exposure. 552 

 553 

5.3.2 Effects of emission ratio of NO to NO2 (RNO/NO2
)  554 

The effects of source emission ratios ( RNO/NO2
=100:10, 50:10 and 100:20) on 555 

reactive pollutant dispersion are investigated with the same [O3] of 20ppbv.   556 

It is shown that decreasing NO or increasing NO2 emissions based on the 557 

reference case can mildly change the fraction of NO converting into NO2. For 558 

example, reducing RNO/NO2
 from 100:10 to 50:10 and 100:20, <P_iF>W of NO 559 

varies from 0.775 to 0.744 and 0.784ppm at the leeward wall(Table 4, column 3), and 560 

from 0.193 to 0.186 and 0.197ppm at windward wall(Table 4, column 5). Furthermore, 561 

<P_iF>W of NO2 drops from 1.643 to 1.406 and 1.205ppm at the leeward wall(Table 562 

4, column 1), and from 0.610 to 0.453 and 0.400ppm at windward wall(Table 4, 563 

column 4). In addition, Fig. 14 presents <P_iF>B curves of NO2 and NO in P-type and 564 

R-type cases with three NO-NO2 emission ratios. Obviously, photochemical reactions 565 

in these R-type cases are still dominated by the depletion of O3 with NO to produce 566 

NO2.  567 
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As displayed in Fig. 14a and Table 5, Case R[S10,50:10,20] and R 568 

[S10,100:20,20] obtain smaller <P_iF>B and decay factor of NO2 (i.e. 0.446-0.091 569 

ppm, b=5.41 and 0.384-0.088ppm, b=6.00) than those in Case R[S10,100:10,20] (i.e. 570 

0.605-0.160ppm, b=6.84). In contrast to Case R[S10,100:10,20], <P_iFt>B of NO in 571 

Case R[S10,50:10,20] and R[S10,100:20,20] reduce nearly 26% and 37%. However, 572 

<P_iF>B curves and decay factors b of NO are quite close between three R-type cases, 573 

i.e. 0.172-0.018, 0.168-0.018 and 0.160-0.017ppm; b=3.05, 2.91 and 3.11(Fig. 14b 574 

and Table 5). It is confirmed that the decrement of  RNO/NO2
 (from 10 to 5) can partly 575 

offset NO2 exposure but have much less impacts on NO exposure.  576 

Overall, the NOx-O3 photochemical processes dependent on the initial proportion 577 

of reactive pollutants are toward satisfying the photostationary state relationship 578 

(i.e. k1[NO][O3]=JNO2
[NO2]). 579 

 580 

5.4 Limitations and future work 581 

Since the 3D urban district models, photochemical reactions and meteorological 582 

conditions adopted in this study are fairly simplified, the present exposure results may 583 

change if more realistic factors are taken into account, such as more realistic urban 584 

configurations(e.g. with variations of building height and street width), more 585 

complicated chemical mechanisms(e.g. VOCs-NOx-O3) and more realistic 586 

atmospheric conditions etc. It is worth mentioning that the chemical processes 587 

dependent on reaction rates are highly associated with the reactive pollutant 588 
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concentration and ambient air temperature. Moreover, realistic atmospheric conditions 589 

include the unsteady temporal and spatial variations of wind speed and direction as 590 

well as various atmospheric stabilities and solar radiation conditions. Thus, further 591 

unsteady CFD simulations will be performed to examine the integrated impacts of 592 

urban turbulence and solar radiation on reactive pollutant dispersion in 3D urban 593 

districts. 594 

 595 

6 Conclusions 596 

Urban residents in near-road buildings commonly suffer from high exposure risk 597 

of vehicular pollutants in which NOx(NO and NO2) act as primary reactive pollutants. 598 

With satisfactory full-scale CFD validation of flow and pollutant dispersion by 599 

experimental data, this study first focuses on the impact of turbulent transport 600 

combined with NOx-O3 photochemical reactions on reactive pollutant dispersion in 601 

neighborhood-scale(21-row, ~1km) three-dimensional(3D) medium-dense urban 602 

clusters (H/W=1, p=f=0.25). Ground-level emission sources of NO and NO2 are 603 

considered in the presence of background O3. The approaching wind is parallel to the 604 

main streets and perpendicular to the secondary streets. As a start, the influences of 605 

various source locations and reactant proportions(NO:NO2:O3) on pollutant dispersion 606 

are investigated under neutral meteorological condition. Personal intake fraction P_iF, 607 

its spatially-averaged values for a building wall(<P_iF>W) and the entire building 608 

surfaces(i.e. building intake fraction <P_iF>B) are adopted to quantify pollutant 609 
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exposure with and without NO-NO2-O3 reactions(i.e. reactive and passive).  610 

Some meaningful findings are summarized as below:  611 

1) There are flow adjustment processes coupling turbulent mixing and chemical 612 

reactions through urban building clusters(Street 1 to Street 20 toward 613 

downstream).With span-wise sources, the secondary street of Street 10 located in the 614 

fully-developed region(i.e. S10 case) experiences weaker wind and subsequently 615 

greater <P_iF>B than the secondary Street 3 located in the upstream flow-adjustment 616 

region (i.e. S3 case). Consequently, in contrast to S3 case, photostationary state defect 617 

(dps) is smaller in S10 case since reactive pollutants have more time to mix and react 618 

in Street 10.  619 

2) With source emission ratios of NO to NO2 of 10(RNO/NO2=100:10) and 620 

background O3 concentration of 20ppbv([O3]=20ppbv), NO-NO2-O3 photochemistry 621 

leads to production of NO2 and depletion of O3 and NO, inducing a significant 622 

increase in NO2 exposure and a slight decrease in NO exposure when compared to 623 

corresponding passive dispersion which only considers the sole role of turbulent 624 

transport. With span-wise pollutant sources, 3D downward helical flows transport 625 

more NOx to the leeward side, inducing much greater leeward-side <P_iF>W than the 626 

windward-side. Moreover, by defining exponential decay function expressed 627 

in <P_iFn>
B

=a× <P_iFt>B
×e(t-n)/b, it is found that <P_iF>B descends exponentially 628 

from target building (<P_iFt >B=0.135ppm or 0.207ppm, t=4 or 11 for S3 or S10) to 629 

downstream buildings (n=t to 21). Especially, <P_iF>B curves decline more sharply 630 
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from Street 10 toward downstream than that from Street 3. However, if stream-wise 631 

sources fixed along the main streets, <P_iF>B first ascends quickly from building 632 

No.1 to 8, then reaches approximate equilibrium values of <P_iF>B= 633 

0.046-0.049ppm. 634 

3) Furthermore, the O3 background concentration ([O3]) and source emission 635 

ratios of NO to NO2( RNO/NO2
) are confirmed as key factors on NOx-O3 reactive 636 

dispersion. The formation of NO by photolyzing NO2 is slightly dominant in 637 

photochemistry when [O3] is 1ppbv. However, if [O3] rises from 20ppbv to 40 and 638 

100ppbv, more NO is oxidized by O3 to generate NO2, which would aggravate NO2 639 

exposure within urban clusters but is conductive to the mitigation of NO exposure. 640 

Under [O3] of 20ppbv, results show that the decrement of  RNO/NO2
 from 10 to 5 can 641 

partly offset NO2 exposure but have much less impacts on NO exposure. 642 

Although further investigations are still required to provide practical guidelines, 643 

this paper is one of the first attempts to quantify how reactive pollutant source 644 

locations and reactant proportions influence reactive pollutant exposure in 3D urban 645 

districts, which can present meaningful references for urban planning. The effective 646 

methodologies are proposed for reactive pollutant exposure assessment in more 647 

complicated urban districts with various meteorological conditions and chemical 648 

mechanisms. 649 
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