6,768 research outputs found

    Experimental evaluation into novel, low cost, modular PEMFC stack

    Get PDF
    Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)The Polymer Electrolyte Membrane Fuel Cell (PEMFC), despite being regarded as an ideal replacement to the internal combustion engine, is still not an economically attractive pri-mover due to a number of key challenges that have yet to be fully resolved; some of which include degradation to cell components resulting in inadequate lifetimes, specialised and costly manufacturing processes and poor gravimetric/volumetric energy densities. This paper presents a novel stack concept which removes the conventional bi polar plate (BPP), a component that is responsible for up to 80% of total stack weight and 90+% of stack volume in some designs. The removal of said component not only improves the volumetric and gravimetric energy density of the PEMFC stack but drastically reduces the cost of the stack by removing all costly manufacturing processes associated with PEMFC component machining while the functionality of the traditional BPP is still retained by the unique stack design. The stack architecture is first presented and then the characterisation of the PEMFC is shown over a wide range of operating scenarios. The experimental studies suggest that the performance of the new design is comparable to that of traditional stacks but at significantly less cost price.Final Published versio

    On the commuting probability and supersolvability of finite groups

    Full text link
    For a finite group GG, let d(G)d(G) denote the probability that a randomly chosen pair of elements of GG commute. We prove that if d(G)>1/sd(G)>1/s for some integer s>1s>1 and GG splits over an abelian normal nontrivial subgroup NN, then GG has a nontrivial conjugacy class inside NN of size at most s−1s-1. We also extend two results of Barry, MacHale, and N\'{\i} Sh\'{e} on the commuting probability in connection with supersolvability of finite groups. In particular, we prove that if d(G)>5/16d(G)>5/16 then either GG is supersolvable, or GG isoclinic to A4A_4, or G/\Center(G) is isoclinic to A4A_4

    Hydrostatic and uniaxial pressure dependence of superconducting transition temperature of KFe2As2 single crystals

    Get PDF
    We present heat capacity, c-axis thermal expansion and pressure dependent, low field, temperature dependent magnetization for pressures up to ~ 12 kbar, data for KFe2As2 single crystals. Tc decreases under pressure with dTc/dP ~ -0.10 K/kbar. The inferred uniaxial, c-axis, pressure derivative is positive, dTc/dpc ~ 0.11 K/kbar. The data are analyzed in comparison with those for overdoped Fe-based superconductors. Arguments are presented that superconductivity in KFe2As2 may be different from the other overdoped, Fe-based materials in the 122 family

    From Entropic Dynamics to Quantum Theory

    Full text link
    Non-relativistic quantum theory is derived from information codified into an appropriate statistical model. The basic assumption is that there is an irreducible uncertainty in the location of particles: positions constitute a configuration space and the corresponding probability distributions constitute a statistical manifold. The dynamics follows from a principle of inference, the method of Maximum Entropy. The concept of time is introduced as a convenient way to keep track of change. A welcome feature is that the entropic dynamics notion of time incorporates a natural distinction between past and future. The statistical manifold is assumed to be a dynamical entity: its curved and evolving geometry determines the evolution of the particles which, in their turn, react back and determine the evolution of the geometry. Imposing that the dynamics conserve energy leads to the Schroedinger equation and to a natural explanation of its linearity, its unitarity, and of the role of complex numbers. The phase of the wave function is explained as a feature of purely statistical origin. There is a quantum analogue to the gravitational equivalence principle.Comment: Extended and corrected version of a paper presented at MaxEnt 2009, the 29th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (July 5-10, 2009, Oxford, Mississippi, USA). In version v3 I corrected a mistake and considerably simplified the argument. The overall conclusions remain unchange

    The Role of Donated Labour and Not for Profit at the Public/Private Interface

    Get PDF
    The aim of this paper is to assess the role of donated labour and not-for-profit (NFP) entities at the public private interface. After discussing what a NFP enterprise is and providing general background, we look at the underlying theory of NFP institutions. The fact that NFP companies are able to precommit themselves not to expropriate donated labour is identified as a primary justification of the NFP model and we emphasise the role that purchasers play in the expropriation problem and suggest that this is a particular concern for institutions at the public private interface. After summarising the empirical literature we provide a brief case study of Glas Cymru and show that it is likely to fall foul of the purchaser problems in that the structure makes it hard to avoid expropriation of donated labour. Although there is limited empirical evidence investigation of what is available suggests that the shift from FP to NFP has had no significant effect on the company. Finally, we address the issue of Foundation Hospitals and suggest that there is more, albeit limited, reason to suggest that the NFP status will prove beneficial for donating labour.not-for-profit, public private interface

    Multi-galileons, solitons and Derrick's theorem

    Get PDF
    The field theory Galilean symmetry, which was introduced in the context of modified gravity, gives a neat way to construct Lorentz-covariant theories of a scalar field, such that the equations of motion contain at most second-order derivatives. Here we extend the analysis to an arbitrary number of scalars, and examine the restrictions imposed by an internal symmetry, focussing in particular on SU(N) and SO(N). This therefore extends the possible gradient terms that may be used to stabilise topological objects such as sigma model lumps.Comment: 7 pages, 1 figure. Minor change to order of reference

    Jaynes' MaxEnt, Steady State Flow Systems and the Maximum Entropy Production Principle

    Full text link
    Jaynes' maximum entropy (MaxEnt) principle was recently used to give a conditional, local derivation of the ``maximum entropy production'' (MEP) principle, which states that a flow system with fixed flow(s) or gradient(s) will converge to a steady state of maximum production of thermodynamic entropy (R.K. Niven, Phys. Rev. E, in press). The analysis provides a steady state analog of the MaxEnt formulation of equilibrium thermodynamics, applicable to many complex flow systems at steady state. The present study examines the classification of physical systems, with emphasis on the choice of constraints in MaxEnt. The discussion clarifies the distinction between equilibrium, fluid flow, source/sink, flow/reactive and other systems, leading into an appraisal of the application of MaxEnt to steady state flow and reactive systems.Comment: 6 pages; paper for MaxEnt0

    Computational methods for Bayesian model choice

    Full text link
    In this note, we shortly survey some recent approaches on the approximation of the Bayes factor used in Bayesian hypothesis testing and in Bayesian model choice. In particular, we reassess importance sampling, harmonic mean sampling, and nested sampling from a unified perspective.Comment: 12 pages, 4 figures, submitted to the proceedings of MaxEnt 2009, July 05-10, 2009, to be published by the American Institute of Physic

    Entropic Priors and Bayesian Model Selection

    Full text link
    We demonstrate that the principle of maximum relative entropy (ME), used judiciously, can ease the specification of priors in model selection problems. The resulting effect is that models that make sharp predictions are disfavoured, weakening the usual Bayesian "Occam's Razor". This is illustrated with a simple example involving what Jaynes called a "sure thing" hypothesis. Jaynes' resolution of the situation involved introducing a large number of alternative "sure thing" hypotheses that were possible before we observed the data. However, in more complex situations, it may not be possible to explicitly enumerate large numbers of alternatives. The entropic priors formalism produces the desired result without modifying the hypothesis space or requiring explicit enumeration of alternatives; all that is required is a good model for the prior predictive distribution for the data. This idea is illustrated with a simple rigged-lottery example, and we outline how this idea may help to resolve a recent debate amongst cosmologists: is dark energy a cosmological constant, or has it evolved with time in some way? And how shall we decide, when the data are in?Comment: Presented at MaxEnt 2009, the 29th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (July 5-10, 2009, Oxford, Mississippi, USA
    • 

    corecore