1,183 research outputs found

    Experimental demonstration of quantum teleportation of a squeezed state

    Get PDF
    We demonstrate an unconditional high-fidelity teleporter capable of preserving the broadband entanglement in an optical squeezed state. In particular, we teleport a squeezed state of light and observe -0.8 ± 0.2dB of squeezing in the teleported (output) state. We show that the squeezing criterion translates directly into a sufficient criterion for entanglement of the upper and lower sidebands of the optical field. Thus, this result demonstrates the first unconditional teleportation of broadband entanglement. Our teleporter achieves sufficiently high fidelity to allow the teleportation to be cascaded, enabling, in principle, the construction of deterministic non-Gaussian operations

    Inequivalent Quantizations of the N = 3 Calogero model with Scale and Mirror-S_3 Symmetry

    Full text link
    We study the inequivalent quantizations of the N = 3 Calogero model by separation of variables, in which the model decomposes into the angular and the radial parts. Our inequivalent quantizations respect the ` mirror-S_3\rq\ invariance (which realizes the symmetry under the cyclic permutations of the particles) and the scale invariance in the limit of vanishing harmonic potential. We find a two-parameter family of novel quantizations in the angular part and classify the eigenstates in terms of the irreducible representations of the S_3 group. The scale invariance restricts the quantization in the radial part uniquely, except for the eigenstates coupled to the lowest two angular levels for which two types of boundary conditions are allowed independently from all upper levels. It is also found that the eigenvalues corresponding to the singlet representations of the S_3 are universal (parameter-independent) in the family, whereas those corresponding to the doublets of the S_3 are dependent on one of the parameters. These properties are shown to be a consequence of the spectral preserving SU(2) (or its subrgoup U(1)) transformations allowed in the family of inequivalent quantizations.Comment: 24 pages, LaTe

    Sequential Quantum Teleportation of Optical Coherent States

    Full text link
    We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F_1 = 0.70 \pm 0.02 and F_2 = 0.75 \pm 0.02, while the fidelity between the input and the sequentially teleported states is determined as F^{(2)} = 0.57 \pm 0.02. This still exceeds the optimal fidelity of one half for classical teleportation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum teleportation experiment with optical coherent states.Comment: 5page, 4figure

    Theory of tunneling spectroscopy of normal metal/ferromagnet/spin-triplet superconductor junctions

    Get PDF
    We study the tunneling conductance of a ballistic normal metal / ferromagnet / spin-triplet superconductor junction using the extended Blonder-Tinkham-Klapwijk formalism as a model for a cc-axis oriented Au / SrRuO3_{3} / Sr2_{2}RuO4_{4} junction. We compare chiral pp-wave (CPW) and helical pp-wave (HPW) pair potentials, combined with ferromagnet magnetization directions parallel and perpendicular to the interface. For fixed θM\theta_{M}, where θM\theta_{M} is a direction of magnetization in the ferromagnet measured from the cc-axis, the tunneling conductance of CPW and HPW clearly show different voltage dependencies. It is found that the cases where the dd-vector is perpendicular to the magnetization direction (CPW with θM=π/2\theta_{M} = \pi/2 and HPW with θM=0\theta_{M} = 0) are identical. The obtained results serve as a guide to determine the pairing symmetry of the spin-triplet superconductor Sr2_{2}RuO4_{4}.Comment: 12 pages, 7 figures. There is also a supplementary (not uploaded

    Extremely strong-coupling superconductivity and anomalous lattice properties in the beta-pyrochlore oxide KOs2O6

    Full text link
    Superconducting and normal-state properties of the beta-pyrochlore oxide KOs2O6 are studied by means of thermodynamic and transport measurements. It is shown that the superconductivity is of conventional s-wave type and lies in the extremely strong-coupling regime. Specific heat and resistivity measurements reveal that there are characteristic low-energy phonons that give rise to unusual scattering of carriers due to strong electron-phonon interactions. The entity of the low-energy phonons is ascribed to the heavy rattling of the K ion confined in an oversized cage made of OsO6 octahedra. It is suggested that this electron-rattler coupling mediates the Cooper pairing, resulting in the extremely strong-coupling superconductivity.Comment: 17 pages (only 4 pages included here. go to http://hiroi.issp.u-tokyo.ac.jp/Published%20papers/K-SC6.pdf for full pages), to be published in PR

    All-optical generation of states for "Encoding a qubit in an oscillator"

    Full text link
    Both discrete and continuous systems can be used to encode quantum information. Most quantum computation schemes propose encoding qubits in two-level systems, such as a two-level atom or an electron spin. Others exploit the use of an infinite-dimensional system, such as a harmonic oscillator. In "Encoding a qubit in an oscillator" [Phys. Rev. A 64 012310 (2001)], Gottesman, Kitaev, and Preskill (GKP) combined these approaches when they proposed a fault-tolerant quantum computation scheme in which a qubit is encoded in the continuous position and momentum degrees of freedom of an oscillator. One advantage of this scheme is that it can be performed by use of relatively simple linear optical devices, squeezing, and homodyne detection. However, we lack a practical method to prepare the initial GKP states. Here we propose the generation of an approximate GKP state by using superpositions of optical coherent states (sometimes called "Schr\"odinger cat states"), squeezing, linear optical devices, and homodyne detection.Comment: 4 pages, 3 figures. Submitted to Optics Letter

    Optical implementation and entanglement distribution in Gaussian valence bond states

    Full text link
    We study Gaussian valence bond states of continuous variable systems, obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of NN sites of an harmonic chain. The entanglement distribution in Gaussian valence bond states can be controlled by varying the input amount of entanglement engineered in a (2M+1)-mode Gaussian state known as the building block, which is isomorphic to the projector applied at a given site. We show how this mechanism can be interpreted in terms of multiple entanglement swapping from the chain of ancillary bonds, through the building blocks. We provide optical schemes to produce bisymmetric three-mode Gaussian building blocks (which correspond to a single bond, M=1), and study the entanglement structure in the output Gaussian valence bond states. The usefulness of such states for quantum communication protocols with continuous variables, like telecloning and teleportation networks, is finally discussed.Comment: 15 pages, 6 figures. To appear in Optics and Spectroscopy, special issue for ICQO'2006 (Minsk). This preprint contains extra material with respect to the journal versio

    Experimental demonstration of quantum teleportation of a squeezed state

    Full text link
    Quantum teleportation of a squeezed state is demonstrated experimentally. Due to some inevitable losses in experiments, a squeezed vacuum necessarily becomes a mixed state which is no longer a minimum uncertainty state. We establish an operational method of evaluation for quantum teleportation of such a state using fidelity, and discuss the classical limit for the state. The measured fidelity for the input state is 0.85±\pm 0.05 which is higher than the classical case of 0.73±\pm0.04. We also verify that the teleportation process operates properly for the nonclassical state input and its squeezed variance is certainly transferred through the process. We observe the smaller variance of the teleported squeezed state than that for the vacuum state input.Comment: 7 pages, 1 new figure, comments adde

    Experimental Demonstration of Macroscopic Quantum Coherence in Gaussian States

    Get PDF
    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion (E.G. Cavalcanti and M. Reid, Phys. Rev. Lett. 97, 170405 (2006)). The macroscopic coherence stems from interference between macroscopically distinct states in phase space and we prove experimentally that even the vacuum state contains these features with a distance in phase space of 0.51±0.020.51\pm0.02 shot noise units (SNU). For squeezed states we found macroscopic superpositions with a distance of up to 0.83±0.020.83\pm0.02 SNU. The proof of macroscopic quantum coherence was investigated with respect to squeezing and purity of the states.Comment: 5 pages, 6 figure
    • …
    corecore