13 research outputs found

    Local Control of Squamous Cell Carcinoma of the Cervix Treated with CT-based Three-dimensional Image-Guided Brachytherapy with or without Central Shielding

    Get PDF
    The purposes of this retrospective study were to analyze local control of squamous cell carcinoma of the cervix treated with computed tomography (CT)-based image-guided brachytherapy (IGBT), as well as the factors affecting local control. A total of 39 patients were analyzed. The prescribed dose to the pelvis was 45-50 Gy with or without central shielding (CS). IGBT was delivered in 1-5 fractions. The total dose for high-risk clinical target volume (HR-CTV) was calculated as the biologically equivalent dose in 2-Gy fractions. The median follow-up period was 29.3 months. The 2-year overall survival and local control rates were 97% and 91%, respectively. In univariate analysis, the dose covering 90% of the HR-CTV (D90) and tumor size were found to be significant factors for local control. The cutoff values of tumor size and D90 for local control were 4.3 cm (area under the curve [AUC] 0.75) and 67.7 Gy (AUC 0.84) in the CS group and 5.3 cm (AUC 0.75) and 73.7 Gy (AUC 0.78) in the group without CS, respectively. However, though the local control of CT-based IGBT was favorable, the results suggested that the dose required for tumor control may differ depending on the presence of CS

    SAXS/WAXS data of conformationally flexible ribose binding protein

    No full text
    Modern artificial intelligence-based protein structure prediction methods, such as Alphafold2, can predict structures of folded proteins with reasonable accuracy. However, Alphafold2 provides a static view of a protein, which does not show the conformational variability of the protein, domain movement in a multi-domain protein, or ligand-induced conformational changes it might undergo in solution. Small-angle X-ay scattering (SAXS) and wide-angle X-ray scattering (WAXS) are solution techniques that can aid in integrative modeling of conformationally flexible proteins, or in validating their predicted ensemble structures. While SAXS is sensitive to global structural features, WAXS can expand the scope of structural modeling by including information about local structural changes. We present SAXS and WAXS datasets obtained from conformationally flexible d-ribose binding protein (RBP) from Escherichia coli in the ribose bound and unbound forms. SAXS/WAXS datasets of RBP provided here may aid in method development efforts for more accurate prediction of structural ensembles of conformationally flexible proteins, and their conformational changes

    Crystal structure of the flexible tandem repeat domain of bacterial cellulose synthesis subunit C

    Get PDF
    Bacterial cellulose (BC) is synthesized and exported through the cell membrane via a large protein complex (terminal complex) that consists of three or four subunits. BcsC is a little-studied subunit considered to export BC to the extracellular matrix. It is predicted to have two domains: a tetratrico peptide repeat (TPR) domain and a beta-barrelled outer membrane domain. Here we report the crystal structure of the N-terminal part of BcsC-TPR domain (Asp24-Arg272) derived from Enterobacter CJF-002. Unlike most TPR-containing proteins which have continuous TPR motifs, this structure has an extra a-helix between two clusters of TPR motifs. Five independent molecules in the crystal had three different conformations that varied at the hinge of the inserted a-helix. Such structural feature indicates that the inserted a-helix confers flexibility to the chain and changes the direction of the TPR super-helix, which was also suggested by structural analysis of BcsC-TPR (Asp24-Leu664) in solution by size exclusion chromatography-small-angle X-ray scattering. The flexibility at the a-helical hinge may play important role for exporting glucan chains

    Neutron crystallography of photoactive yellow protein reveals unusual protonation state of Arg52 in the crystal

    No full text
    Because of its high pKa, arginine (Arg) is believed to be protonated even in the hydrophobic environment of the protein interior. However, our neutron crystallographic structure of photoactive yellow protein, a light sensor, demonstrated that Arg52 adopts an electrically neutral form. We also showed that the hydrogen bond between the chromophore and Glu46 is a so-called low barrier hydrogen bond (LBHB). Because both the neutral Arg and LBHB are unusual in proteins, these observations remain controversial. To validate our findings, we carried out neutron crystallographic analysis of the E46Q mutant of PYP. The resultant structure revealed that the proportion of the cationic form is higher in E46Q than in WT, although the cationic and neutral forms of Arg52 coexist in E46Q. These observations were confirmed by the occupancy of the deuterium atom bound to the N η1 atom combined with an alternative conformation of the N(η2)D2 group comprising sp2 hybridisation. Based on these results, we propose that the formation of the LBHB decreases the proton affinity of Arg52, stabilizing the neutral form in the crystal

    Construction of a Quadrangular Tetramer and a Cage-Like Hexamer from Three-Helix Bundle-Linked Fusion Proteins

    Get PDF
    Self-assembled protein nanostructures have gained interest, owing to their potential applications in biomaterials; however, successful design and construction of protein nanostructures are limited. Herein, we constructed fusion protein 1 by linking the C-terminus of a dimerization domain and the N-terminus of another dimerization domain with a three-helix bundle protein, where it self-assembled mainly into tetramers. By replacing the C-terminal dimerization domain of 1 with a trimerization domain (fusion protein 2), hexamers were mainly obtained. According to ab initio structural models reconstructed from the small-angle X-ray scattering data, the tetramer of 1 and hexamer of 2 adopted quadrangle and cage-like structures, respectively, although they were combinations of different conformations. High-speed atomic force microscopy observations indicated that the tetramer and hexamer exhibit conformational dynamics. These results show that the present method utilizing three-helix bundle-linked fusion proteins is useful in the construction of protein nanostructures
    corecore