23 research outputs found

    Cellular actors, Toll-like receptors, and local cytokine profile in acute coronary syndromes

    Get PDF
    Aims Inflammation plays a key role in acute coronary syndromes (ACS). Toll-like receptors (TLR) on leucocytes mediate inflammation and immune responses. We characterized leucocytes and TLR expression within coronary thrombi and compared cytokine levels from the site of coronary occlusion with aortic blood (AB) in ACS patients. Methods and results In 18 ACS patients, thrombi were collected by aspiration during primary percutaneous coronary intervention. Thrombi and AB from these patients as well as AB from 10 age-matched controls without coronary artery disease were assessed by FACS analysis for cellular distribution and TLR expression. For further discrimination of ACS specificity, seven non-coronary intravascular thrombi and eight thrombi generated in vitro were analysed. In 17 additional patients, cytokine levels were determined in blood samples from the site of coronary occlusion under distal occlusion and compared with AB. In coronary thrombi from ACS, the percentage of monocytes related to the total leucocyte count was greater than in AB (47 vs. 20%, P = 0.0002). In thrombi, TLR-4 and TLR-2 were overexpressed on CD14-labelled monocytes, and TLR-2 was increased on CD66b-labelled granulocytes, in comparison with leucocytes in AB. In contrast, in vitro and non-coronary thrombi exhibited no overexpression of TLR-4. Local blood samples taken under distal occlusion revealed elevated concentrations of chemokines (IL-8, MCP-1, eotaxin, MIP-1α, and IP-10) and cytokines (IL-1ra, IL-6, IL-7, IL-12, IL-17, IFN-α, and granulocyte-macrophage colony-stimulating factor) regulating both innate and adaptive immunity (all P < 0.05). Conclusion In ACS patients, monocytes accumulate within thrombi and specifically overexpress TLR-4. Together with the local expression patterns of chemokines and cytokines, the increase of TLR-4 reflects a concerted activation of this inflammatory pathway at the site of coronary occlusion in AC

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    B-type natriuretic peptide in patients undergoing orthopaedic surgery : a prospective cohort study

    No full text
    Postoperative cardiac complications pose a substantial risk to patients undergoing orthopaedic surgery

    Cellular actors, Toll-like receptors, and local cytokine profile in acute coronary syndromes

    Full text link
    AIMS: Inflammation plays a key role in acute coronary syndromes (ACS). Toll-like receptors (TLR) on leucocytes mediate inflammation and immune responses. We characterized leucocytes and TLR expression within coronary thrombi and compared cytokine levels from the site of coronary occlusion with aortic blood (AB) in ACS patients. METHODS AND RESULTS: In 18 ACS patients, thrombi were collected by aspiration during primary percutaneous coronary intervention. Thrombi and AB from these patients as well as AB from 10 age-matched controls without coronary artery disease were assessed by FACS analysis for cellular distribution and TLR expression. For further discrimination of ACS specificity, seven non-coronary intravascular thrombi and eight thrombi generated in vitro were analysed. In 17 additional patients, cytokine levels were determined in blood samples from the site of coronary occlusion under distal occlusion and compared with AB. In coronary thrombi from ACS, the percentage of monocytes related to the total leucocyte count was greater than in AB (47 vs. 20%, P = 0.0002). In thrombi, TLR-4 and TLR-2 were overexpressed on CD14-labelled monocytes, and TLR-2 was increased on CD66b-labelled granulocytes, in comparison with leucocytes in AB. In contrast, in vitro and non-coronary thrombi exhibited no overexpression of TLR-4. Local blood samples taken under distal occlusion revealed elevated concentrations of chemokines (IL-8, MCP-1, eotaxin, MIP-1alpha, and IP-10) and cytokines (IL-1ra, IL-6, IL-7, IL-12, IL-17, IFN-alpha, and granulocyte-macrophage colony-stimulating factor) regulating both innate and adaptive immunity (all P < 0.05). CONCLUSION: In ACS patients, monocytes accumulate within thrombi and specifically overexpress TLR-4. Together with the local expression patterns of chemokines and cytokines, the increase of TLR-4 reflects a concerted activation of this inflammatory pathway at the site of coronary occlusion in ACS

    Clinical criteria replenish high-sensitive troponin and inflammatory markers in the stratification of patients with suspected acute coronary syndrome

    Get PDF
    OBJECTIVES: In patients with suspected acute coronary syndrome (ACS), rapid triage is essential. The aim of this study was to establish a tool for risk prediction of 30-day cardiac events (CE) on admission. 30-day cardiac events (CE) were defined as early coronary revascularization, subsequent myocardial infarction, or cardiovascular death within 30 days. METHODS AND RESULTS: This single-centre, prospective cohort study included 377 consecutive patients presenting to the emergency department with suspected ACS and for whom troponin T measurements were requested on clinical grounds. Fifteen biomarkers were analyzed in the admission sample, and clinical parameters were assessed by the TIMI risk score for unstable angina/Non-ST myocardial infarction and the GRACE risk score. Sixty-nine (18%) patients presented with and 308 (82%) without ST-elevations, respectively. Coronary angiography was performed in 165 (44%) patients with subsequent percutaneous coronary intervention - accounting for the majority of CE - in 123 (33%) patients, respectively. Eleven out of 15 biomarkers were elevated in patients with CE compared to those without. High-sensitive troponin T (hs-cTnT) was the best univariate biomarker to predict CE in Non-ST-elevation patients (AUC 0.80), but did not yield incremental information above clinical TIMI risk score (AUC 0.80 vs 0.82, p = 0.69). Equivalence testing of AUCs of risk models and non-inferiority testing demonstrated that the clinical TIMI risk score alone was non-inferior to its combination with hs-cTnT in predicting CE. CONCLUSIONS: In patients presenting without ST-elevations, identification of those prone to CE is best based on clinical assessment based on TIMI risk score criteria and hs-cTnT

    Study flow chart of the prospective, observational MyRiAD study.

    No full text
    <p>Abbreviations: ER, emergency room; CA, coronary angiography; CAD, coronary artery disease; CE, cardiac events (composite of early coronary revascularization by percutaneous coronary intervention [PCI] or coronary artery bypass grafting [CABG], subsequent myocardial infarction or cardiovascular death); c-cTnT, conventional cardiac troponin T; CK, creatine kinase; CK-MB, creatine kinase-myocardial band.</p
    corecore