41 research outputs found

    Differentiation of Brain Metastases and Gliomas Based on Color Map of Phase Difference Enhanced Imaging

    Get PDF
    Background and objective: Phase difference enhanced imaging (PADRE), a new phase-related MRI technique, can enhance both paramagnetic and diamagnetic substances, and select which phases to be enhanced. Utilizing these characteristics, we developed color map of PADRE (Color PADRE), which enables simultaneous visualization of myelin-rich structures and veins. Our aim was to determine whether Color PADRE is sufficient to delineate the characteristics of non-gadolinium-enhancing T2-hyperintense regions related with metastatic tumors (MTs), diffuse astrocytomas (DAs) and glioblastomas (GBs), and whether it can contribute to the differentiation of MTs from GBs.Methods: Color PADRE images of 11 patients with MTs, nine with DAs and 17 with GBs were created by combining tissue-enhanced, vessel-enhanced and magnitude images of PADRE, and then retrospectively reviewed. First, predominant visibility of superficial white matter and deep medullary veins within non-gadolinium-enhancing T2-hyperintense regions were compared among the three groups. Then, the discriminatory power to differentiate MTs from GBs was assessed using receiver operating characteristic analysis.Results: The degree of visibility of superficial white matter was significantly better in MTs than in GBs (p = 0.017), better in GBs than in DAs (p = 0.014), and better in MTs than in DAs (p = 0.0021). On the contrary, the difference in the visibility of deep medullary veins was not significant (p = 0.065). The area under the receiver operating characteristic curve to discriminate MTs from GBs was 0.76 with a sensitivity of 80% and specificity of 64%.Conclusion: Visibility of superficial white matter on Color PADRE reflects inferred differences in the proportion of vasogenic edema and tumoral infiltration within non-gadolinium-enhancing T2-hyperintense regions of MTs, DAs and GBs. Evaluation of peritumoral areas on Color PADRE can help to distinguish MTs from GBs

    Imatinib ameliorates bronchiolitis obliterans via inhibition of fibrocyte migration and differentiation

    Get PDF
    Background: Imatinib, a tyrosine kinase inhibitor, has been proposed as a potential anti-fibrotic agent for fibroproliferative diseases, including bronchiolitis obliterans (BO). However, the underlying anti-fibrotic mechanisms of the agent remain unclear. We evaluated whether bone (BM)-derived progenitor cells, fibrocytes, might be a target of imatinib in the attenuation of BO. Methods: We used a murine BO model induced by heterotopic tracheal transplantation and assessed the origin of fibroblasts by using green fluorescent protein-BM chimeric mice. We also evaluated the effects of imatinib on luminal obstruction and fibrocyte accumulation. The effects of imatinib on fibrocyte migration and differentiation were assessed by culturing fibrocytes in vitro. Results: In the murine BO model, tracheal allografts showed epithelial injury and developed complete luminal occlusion 28 days after transplantation. Most of the mesenchymal cells that had accumulated in the tracheal allograft were derived from BM cells. Imatinib treatment ameliorated the airway luminal occlusion and significantly reduced the number of fibrocytes in the allografts. In vitro studies showed that imatinib inhibited migration of cultured blood fibrocytes via the platelet-derived growth factor/platelet-derived growth factor receptor axis. Imatinib also inhibited differentiation of fibrocytes via suppression of c-Abl activity that was essential for the differentiation of monocytes to fibrocytes. Conclusions: Imatinib prevents airway luminal obstruction by inhibiting the migration and differentiation of fibrocytes. Fibrocytes may be a novel target in the prevention and treatment of BO. © 2016 International Society for Heart and Lung Transplantation.Embargo Period 12 month

    The measurement of cough response to bronchoconstriction induced by methacholine inhalation in healthy subjects: An examination using the Astograph method

    Get PDF
    Background: We demonstrated that heightened cough response to bronchoconstriction is a fundamental feature of cough variant asthma (CVA). To evaluate this physiological feature of CVA in daily clinical practice, it is necessary to clarify the cough response to bronchoconstriction in healthy subjects. We evaluated cough response to methacholine (MCh)-induced bronchoconstriction in healthy subjects. A forced oscillometry technique was used to measure airway resistance changes with Mch. Methods: Healthy never-smokers (21 men, 20 women; mean 22.3 ± 3.7 years) participated. None had a >3-week cough history, clinically significant respiratory or cardiovascular disorders, or disorders that might put subjects at risk or influence the study results or the subjects’ ability to participate. Twofold increasing concentrations of Mch chloride diluted in phosphate-buffered saline (0.039 to 160 mg/mL) were inhaled from nebulizers at 1-minute intervals during subjects’ tidal breathing after the baseline respiratory resistance (Rrs) was recorded. Mch inhalation continued until Rrs reached twice the baseline value and forced expiratory volume in 1 second (FEV1) decreased to <90% of baseline value. Spirometry was measured before Mch inhalation and immediately after Rrs had increased twofold. Coughs were counted during and for 30 minutes after Mch inhalation. The cough reflex sensitivity to capsaicin was also examined. Results: The number of coughs was 11.1 ± 14.3 (median, 7.0; range, 0 to 71; reference range, 0 to 39.7). There was no significant difference in the cough response between the sexes. The reproducibility of the cough response to bronchoconstriction was sufficient. No correlation existed between the bronchoconstriction-induced cough response and capsaicin cough-reflex sensitivity. Conclusions: Using the Astograph method, cough response to bronchoconstriction could be measured easily, safely and highly reproducibly in healthy subjects. © 2017 Taylor & FrancisEmbargo Period 12 month

    Collagen adhesion gene is associated with blood stream infections caused by methicillin-resistant Staphylococcus aureus

    Get PDF
    Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) causes hospital- and community-acquired infections. It is not clear whether genetic characteristics of the bacteria contribute to disease pathogenesis in MRSA infection. We hypothesized that whole genome analysis of MRSA strains could reveal the key gene loci and/or the gene mutations that affect clinical manifestations of MRSA infection. Methods: Whole genome sequences (WGS) of MRSA of 154 strains were analyzed with respect to clinical manifestations and data. Further, we evaluated the association between clinical manifestations in MRSA infection and genomic information. Results: WGS revealed gene mutations that correlated with clinical manifestations of MRSA infection. Moreover, 12 mutations were selected as important mutations by Random Forest analysis. Cluster analysis revealed strains associated with a high frequency of bloodstream infection (BSI). Twenty seven out of 34 strains in this cluster caused BSI. These strains were all positive for collagen adhesion gene (cna) and have mutations in the locus, those were selected by Random Forest analysis. Univariate and multivariate analysis revealed that these gene mutations were the predictor for the incidence of BSI. Interestingly, mutant CNA protein showed lower attachment ability to collagen, suggesting that the mutant protein might contribute to the dissemination of bacteria. Conclusions: These findings suggest that the bacterial genotype affects the clinical characteristics of MRSA infection. (c) 2019 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases

    Nuclear RNA export factor 7 is localized in processing bodies and neuronal RNA granules through interactions with shuttling hnRNPs

    Get PDF
    The nuclear RNA export factor (NXF) family proteins have been implicated in various aspects of post-transcriptional gene expression. This study shows that mouse NXF7 exhibits heterologous localization, i.e. NXF7 associates with translating ribosomes, stress granules (SGs) and processing bodies (P-bodies), the latter two of which are believed to be cytoplasmic sites of storage, degradation and/or sorting of mRNAs. By yeast two-hybrid screening, a series of heterogeneous nuclear ribonucleoproteins (hnRNPs) were identified as possible binding partners for NXF7. Among them, hnRNP A3, which is believed to be involved in translational control and/or cytoplasmic localization of certain mRNAs, formed a stable complex with NXF7 in vitro. Although hnRNP A3 was not associated with translating ribosomes, it was co-localized with NXF7 in P-bodies. After exposing to oxidative stress, NXF7 trans-localized to SGs, whereas hnRNP A3 did not. In differentiated neuroblastoma Neuro2a cells, NXF7 was co-localized with hnRNP A3 in cell body and neurites. The amino terminal half of NXF7, which was required for stable complex formation with hnRNP A3, coincided with the region required for localization in both P-bodies and neuronal RNA granules. These findings suggest that NXF7 plays a role in sorting, transport and/or storage of mRNAs through interactions with hnRNP A3
    corecore