38 research outputs found

    Peroxynitrite decomposition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats

    Get PDF
    BACKGROUND: Oxidative stress is involved in cisplatin-nephrotoxicity. However, it has not completely established if reactive nitrogen species and nitrosative stress are involved in this experimental model. The purpose of this work was to study the role of peroxynitrite, a reactive nitrogen specie, in cisplatin-nephrotoxicity using the compound 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron (III) (FeTPPS), a soluble complex able to metabolize peroxynitrite. RESULTS: In rats treated with cisplatin (a single intraperitoneal dose of 7.5 mg/kg body weight), renal nitrosative stress was made evident by the increase in 3-nitrotyrosine on day 3. In addition, cisplatin-induced nephrotoxicity was evident by the histological damage of proximal tubular cells and by the increase in (a) serum creatinine, (b) blood urea nitrogen, and (c) urinary excretion of N-acetyl-β-D-glucosaminidase and total protein. Cisplatin-induced nitrosative stress and nephrotoxicity were attenuated by FeTPPS-treatment (15 mg/kg body weight, intraperitoneally, every 12 hours for 3 days). CONCLUSIONS: Nitrosative stress is involved in cisplatin-induced nephrotoxicity in rats. Our data suggest that peroxynitrite is involved, at least in part, in cisplatin-induced nephrotoxicity and protein nitration

    Morphological and Physicochemical Characterization of Agglomerates of Titanium Dioxide Nanoparticles in Cell Culture Media

    Get PDF
    Titanium dioxide nanoparticles (TiO2 NP) are possible carcinogenic materials (2B-IARC) and their toxicity depends on shape, size, and electrical charge of primary NP and on the system formed by NP media. The aim of this work was to characterize agglomerates of three TiO2 NP by evaluating their morphometry, stability, and zeta potential (ζ) in liquid media and their changes with time. Sizes of agglomerates by dynamic light scattering (DLS) resulted to be 10–50 times larger than those obtained by digital image analysis (DIA) given the charged zone around particles. Fractal dimension (FD) was highest for agglomerates of spheres and belts in F12K, and in E171 in FBS media. E171 and belts increased FD with time. At time zero, using water as dispersant FD was larger for agglomerates of spheres than for of E171. Belts suspended in water had the smallest values of circularity (Ci) which was approximately unchanged with time. All dispersions had ζ values around −30 mV at physiological pH (7.4) and dispersions of NP in water and FBS showed maximum stability (Turbiscan Lab analysis). Results help in understanding the complex NP geometry-size-stability relationships when performing in vivo and in vitro environmental-toxicity works and help in supporting decisions on the usage of TiO2 NP

    Evaluation of chromosome organization and microtubule arrangement in goat (capra aegragrus) oocytes after vitrification, in vitro maturation and fertilization, and early embryo development

    Get PDF
    Objective: Evaluate the use of Ethylene Glycol (EG), Dimethyl Sulfoxide (DMSO), Sucrose and Fetal Bovine Serum (FBS) as cryoprotectants and their effect on the organization of chromosomes and the arrangement of microtubules, during the vitrification process in goat oocytes matured in vitro and in the development of preimplantation embryos produced in vitro. Design/methodology/approach: In vitro matured oocytes were divided into 3 groups (control group, cryoprotectant exposed group, vitrified group). A mixture of 15% EG, 15% DMSO, 0.4 M sucrose and 20% FBS was used for the vitrification using the Cryotop device. In vitro matured oocytes were warmed and afterwards each group was divided into two more groups. Both groups were subjected to immunofluorescence, the first group to observe the damage produced to the chromosomes and microtubules and the second group to observe the effect on the in vitro embryo development. Results: The combined use of 15% EG, 15% DMSO, 0.4 M Sucrose and 20% FBS during vitrification did not prevent cryoinjuries in goat oocytes and in vitro produced embryos, since embryo development was disrupted before the blastocyst stage by stopping cleavage at the morula stage. This disruption was associated with chromosome decondensation and the absence of a microtubule network, thereby hindering chromosomal segregation. Limitations on study/implications: The effect of conventional cryoprotectants on chromosomes and microtubules arrangement on vitrified goat oocytes and in vitro embryo production. Findings/conclusions: The combined use of 15% EG, 15% DMSO, 0.4 M sucrose and 20% FBS as vitrification cryoprotectants did not prevent cryoinjuries in caprine oocytes and did not improve caprine embryo development in vitro

    S-allylmercaptocysteine scavenges hydroxyl radical and singlet oxygen in vitro and attenuates gentamicin-induced oxidative and nitrosative stress and renal damage in vivo

    Get PDF
    BACKGROUND: Oxidative and nitrosative stress have been involved in gentamicin-induced nephrotoxicity. The purpose of this work was to study the effect of S-allylmercaptocysteine, a garlic derived compound, on gentamicin-induced oxidative and nitrosative stress and nephrotoxicity. In addition, the in vitro reactive oxygen species scavenging properties of S-allylmercaptocysteine were studied. RESULTS: S-allylmercaptocysteine was able to scavenge hydroxyl radicals and singlet oxygen in vitro. In rats treated with gentamicin (70 mg/Kg body weight, subcutaneously, every 12 h, for 4 days), renal oxidative stress was made evident by the increase in protein carbonyl content and 4-hydroxy-2-nonenal, and the nitrosative stress was made evident by the increase in 3-nitrotyrosine. In addition, gentamicin-induced nephrotoxicity was evident by the: (1) decrease in creatinine clearance and in activity of circulating glutathione peroxidase, and (2) increase in urinary excretion of N-acetyl-β-D-glucosaminidase, and (3) necrosis of proximal tubular cells. Gentamicin-induced oxidative and nitrosative stress and nephrotoxicity were attenuated by S-allylmercaptocysteine treatment (100 mg/Kg body weight, intragastrically, 24 h before the first dose of gentamicin and 50 mg/Kg body weight, intragastrically, every 12 h, for 4 days along gentamicin-treatment). CONCLUSION: In conclusion, S-allylmercaptocysteine is able to scavenge hydroxyl radicals and singlet oxygen in vitro and to ameliorate the gentamicin-induced nephrotoxicity and oxidative and nitrosative stress in vivo

    Toxins from the Caribbean sea anemone Bunodeopsis globulifera increase cisplatin-induced cytotoxicity of lung adenocarcinoma cells

    Get PDF
    Background Lung cancer causes 1.4 million deaths worldwide while non-small-cell lung cancer (NSCLC) represents 80-85% of the cases. Cisplatin is a standard chemotherapy against this type of cancer; however, tumor cell resistance to this drug limits its efficacy. Sea anemones produce compounds with pharmacological activities that may be useful for augmenting cisplatin efficacy. This study aimed to evaluate the pharmacological activities of crude venom (CV) from the sea anemone Bunodeopsis globulifera and four derived fractions (F1, F2, F3 and F4) to test their increase efficiency cisplatin cytotoxicity in human lung adenocarcinoma cells. Results Pre-exposure to CV, F1 and F2 fractions increases cisplatin cytotoxicity in human lung adenocarcinoma cells under specific conditions. Exposure to CV at 50 μgmL-1 induced a reduction of approximately 50% in cell viability, while a similar cytotoxic effect was observed when cell culture was exposed to F1 at 25 μgmL -1 or F2 at 50 μgmL-1. The cell culture exposure to F1 (10 μgmL-1) fraction combined with cisplatine (25 μM) provoked a decrease in MTT reduction until 65.57% while F2 (25 μgmL-1) fraction combined with cisplatin (10 μM) provoked a decrease in MTT reduction of 72.55%. Conclusions The F1 fraction had the greatest effect on the lung adenocarcinoma cell line compared with CV and F2. The combination of antineoplastic drugs and sea anemone toxins might allow a reduction of chemotherapeutic doses and thus mitigate side effects

    Sampling and composition of airborne particulate matter (PM10) from two locations of Mexico City

    No full text
    The PM10 airborne particulate matter with an aerodynamic diameter ≤10 µm is considered as a risk factor of various adverse health outcomes, including lung cancer. Here we described the sampling and composition of PM10 collected from an industrial zone (IZ), and a commercial zone (CZ) of Mexico City. The PM10 was collected with a high-volume sampler in the above mentioned locations and both types of PM10 sampled were characterized by the content of polycyclic aromatic hydrocarbons (PAHs), metals, and endotoxin. The endotoxin PM10 content from IZ and CZ displayed 138.4 UE/mg and 170.4 UE/mg of PM10, respectively

    Deciphering the Code between Air Pollution and Disease: The Effect of Particulate Matter on Cancer Hallmarks

    No full text
    Air pollution has been recognized as a global health problem, causing around 7 million deaths worldwide and representing one of the highest environmental crises that we are now facing. Close to 30% of new lung cancer cases are associated with air pollution, and the impact is more evident in major cities. In this review, we summarize and discuss the evidence regarding the effect of particulate matter (PM) and its impact in carcinogenesis, considering the “hallmarks of cancer” described by Hanahan and Weinberg in 2000 and 2011 as a guide to describing the findings that support the impact of particulate matter during the cancer continuum

    Nrf2 protects the lung against inflammation induced by titanium dioxide nanoparticles: A positive regulator role of Nrf2 on cytokine release

    No full text
    et al.Titanium dioxide nanoparticles (TiO2 NPs) have been classified as possibly carcinogenic to humans and they are an important nanomaterial widely used in pharmaceutical and paint industries. Inhalation is one of the most important routes of exposure in occupational settings. Several experimental models have shown that oxidative stress and inflammation are key mediators of cell damage. In this regard, Nrf2 modulates cytoprotection against oxidative stress and inflammation, however, its role in inflammation induced by TiO2 NPs exposure has been less investigated. The aim of this work was to investigate the role of Nrf2 in the cytokines produced after 4 weeks of TiO2 NPs exposure (5 mg/kg/2 days/week) using wild-type and Nrf2 knockout C57bl6 mice. Results showed that Nrf2 protects against inflammation and oxidative damage induced by TiO2 NPs exposure, however, Nrf2 is a positive mediator in the expression of IFN-γ, TNF-α, and TGF-β in bronchial epithelium and alveolar space after 4 weeks of exposure. These results suggest that Nrf2 has a central role in up-regulation of cytokines released during inflammation induced by TiO2 NPs and those cytokines are needed to cope with histological alterations in lung tissue.Funded by: CONACyT. Grant Numbers: 166727, 129838; DGAPA PAPIIT. Grant Numbers: IB201112, IN210713; Spanish Ministry of Economy and Competitiveness. Grant Number: SAF2010-17822; FES-Iztacala. Grant Number: Project 28; CONACyT and Escuela Nacional de Ciencias Biológicas at Instituto Politécnico Nacional (Doctorado en Ciencias en Alimentos). Grant Number: 202805.Peer Reviewe

    Nucleotide Excision Repair Pathway Activity Is Inhibited by Airborne Particulate Matter (PM<sub>10</sub>) through XPA Deregulation in Lung Epithelial Cells

    No full text
    Airborne particulate matter with a diameter size of ≤10 µm (PM10) is a carcinogen that contains polycyclic aromatic hydrocarbons (PAH), which form PAH–DNA adducts. However, the way in which these adducts are managed by DNA repair pathways in cells exposed to PM10 has been partially described. We evaluated the effect of PM10 on nucleotide excision repair (NER) activity and on the levels of different proteins of this pathway that eliminate bulky DNA adducts. Our results showed that human lung epithelial cells (A549) exposed to 10 µg/cm2 of PM10 exhibited PAH–DNA adducts as well as an increase in RAD23 and XPD protein levels (first responders in NER). In addition, PM10 increased the levels of H4K20me2, a recruitment signal for XPA. However, we observed a decrease in total and phosphorylated XPA (Ser196) and an increase in phosphatase WIP1, aside from the absence of XPA–RPA complex, which participates in DNA-damage removal. Additionally, an NER activity assay demonstrated inhibition of the NER functionality in cells exposed to PM10, indicating that XPA alterations led to deficiencies in DNA repair. These results demonstrate that PM10 exposure induces an accumulation of DNA damage that is associated with NER inhibition, highlighting the role of PM10 as an important contributor to lung cancer
    corecore