142 research outputs found

    培養ヒトメサンギウム細胞およびヒト臍帯静脈内皮細胞における単球走化性因子のサイトカイン誘導性産生とチアゾリジン系薬剤によるその抑制

    Get PDF
    取得学位:博士(医学), 学位授与番号:医博乙第1531号, 学位授与年月日:平成13年3月21日, 学位授与年:200

    Activation of fibroblast-like synoviocytes derived from rheumatoid arthritis via lysophosphatidic acid-lysophosphatidic acid receptor 1 cascade

    Get PDF
    INTRODUCTION: Lysophosphatidic acid (LPA) is a bioactive lipid that binds to G protein–coupled receptors (LPA(1–6)). Recently, we reported that abrogation of LPA receptor 1 (LPA(1)) ameliorated murine collagen-induced arthritis, probably via inhibition of inflammatory cell migration, Th17 differentiation and osteoclastogenesis. In this study, we examined the importance of the LPA–LPA(1) axis in cell proliferation, cytokine/chemokine production and lymphocyte transmigration in fibroblast-like synoviocytes (FLSs) obtained from the synovial tissues of rheumatoid arthritis (RA) patients. METHODS: FLSs were prepared from synovial tissues of RA patients. Expression of LPA(1–6) was examined by quantitative real-time RT-PCR. Cell surface LPA(1) expression was analyzed by flow cytometry. Cell proliferation was analyzed using a cell-counting kit. Production of interleukin 6 (IL-6), vascular endothelial growth factor (VEGF), chemokine (C-C motif) ligand 2 (CCL2), metalloproteinase 3 (MMP-3) and chemokine (C-X-C motif) ligand 12 (CXCL12) was measured by enzyme-linked immunosorbent assay. Pseudoemperipolesis was evaluated using a coculture of RA FLSs and T or B cells. Cell motility was examined by scrape motility assay. Expression of adhesion molecules was determined by flow cytometry. RESULTS: The expression of LPA(1) mRNA and cell surface LPA(1) was higher in RA FLSs than in FLSs from osteoarthritis tissue. Stimulation with LPA enhanced the proliferation of RA FLSs and the production of IL-6, VEGF, CCL2 and MMP-3 by FLSs, which were suppressed by an LPA(1) inhibitor (LA-01). Ki16425, another LPA(1) antagonist, also suppressed IL-6 production by LPA-stimulated RA FLSs. However, the production of CXCL12 was not altered by stimulation with LPA. LPA induced the pseudoemperipolesis of T and B cells cocultured with RA FLSs, which was suppressed by LPA(1) inhibition. In addition, LPA enhanced the migration of RA FLSs and expression of vascular cell adhesion molecule and intercellular adhesion molecule on RA FLSs, which were also inhibited by an LPA(1) antagonist. CONCLUSIONS: Collectively, these results indicate that LPA–LPA(1) signaling contributes to the activation of RA FLSs

    Silkworm Pupae Function as Efficient Producers of Recombinant Glycoproteins with Stable-Isotope Labeling

    Get PDF
    Baculovirus-infected silkworms are promising bioreactors for producing recombinant glycoproteins, including antibodies. Previously, we developed a method for isotope labeling of glycoproteins for nuclear magnetic resonance (NMR) studies using silkworm larvae reared on an artificial diet containing 15N-labeled yeast crude protein extract. Here, we further develop this method by introducing a technique for the expression of isotope-labeled glycoproteins by silkworm pupae, which has several potential advantages relative to larvae-based techniques in terms of production yield, ease of handling, and storage. Here, we fed fifth instar larvae an artificial diet with an optimized composition containing [methyl-13C]methionine, leading to pupation. Nine-day-old pupae were then injected with recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid for expression of recombinant human immunoglobulin G (IgG). From the whole-body homogenates of pupae, 0.35 mg/pupa of IgG was harvested, which is a yield that is five times higher than can be obtained from larvae. Recombinant IgG, thus prepared, exhibited mainly three kinds of pauci-mannose-type oligosaccharides and had a 13C-enrichment ratio of approximately 80%. This enabled selective observation of NMR signals originating from the methionyl methyl group of IgG, confirming its conformational integrity. These data demonstrate the utility of silkworm pupae as factories for producing recombinant glycoproteins with amino-acid-selective isotope labeling

    Verification of Implant Surface Modification by a Novel Processing Method

    Get PDF
    Metals have been used clinically as biomaterials, especially in the orthopaedic and dental fields. Metals used as implants wear at contact surfaces, producing metal particles and metal ions that may be harmful. Newly developed metal implants and methods of implant surface modification are currently under scrutiny. We evaluated the use of electrolytic in-process dressing (ELID) as a surface finishing method for metal implants. Metal implants processed using the ELID method (ELID group) or not processed (Non-ELID group) were inserted surgically into rabbit femurs. The rabbits were sacrificed postoperatively over a 24-week period. We assessed the concentrations of the cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, the resistance to implant pull-out, and histopathology at the implant site. There was no significant difference between the groups regarding the cytokine concentrations or implant pull-out resistance. Many particles indicating wear around the implant were noted in the Non-ELID group (n=10) but not the ELID group (n=13), while a fibrous membrane adhering to the every implant was noted in the ELID group. The formation of a fibrous membrane rather than metal particles in the ELID group may indicate improved biocompatibility, and it suggests that ELID may prevent corrosion in the areas of contact
    corecore