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Abstract

Introduction: Lysophosphatidic acid (LPA) is a bioactive lipid that binds to G protein–coupled receptors (LPA1–6).
Recently, we reported that abrogation of LPA receptor 1 (LPA1) ameliorated murine collagen-induced arthritis, probably
via inhibition of inflammatory cell migration, Th17 differentiation and osteoclastogenesis. In this study, we examined the
importance of the LPA–LPA1 axis in cell proliferation, cytokine/chemokine production and lymphocyte transmigration in
fibroblast-like synoviocytes (FLSs) obtained from the synovial tissues of rheumatoid arthritis (RA) patients.

Methods: FLSs were prepared from synovial tissues of RA patients. Expression of LPA1–6 was examined by quantitative
real-time RT-PCR. Cell surface LPA1 expression was analyzed by flow cytometry. Cell proliferation was analyzed using a
cell-counting kit. Production of interleukin 6 (IL-6), vascular endothelial growth factor (VEGF), chemokine (C-C motif)
ligand 2 (CCL2), metalloproteinase 3 (MMP-3) and chemokine (C-X-C motif) ligand 12 (CXCL12) was measured by
enzyme-linked immunosorbent assay. Pseudoemperipolesis was evaluated using a coculture of RA FLSs and T or
B cells. Cell motility was examined by scrape motility assay. Expression of adhesion molecules was determined by
flow cytometry.

Results: The expression of LPA1 mRNA and cell surface LPA1 was higher in RA FLSs than in FLSs from osteoarthritis
tissue. Stimulation with LPA enhanced the proliferation of RA FLSs and the production of IL-6, VEGF, CCL2 and MMP-3
by FLSs, which were suppressed by an LPA1 inhibitor (LA-01). Ki16425, another LPA1 antagonist, also suppressed IL-6
production by LPA-stimulated RA FLSs. However, the production of CXCL12 was not altered by stimulation with LPA.
LPA induced the pseudoemperipolesis of T and B cells cocultured with RA FLSs, which was suppressed by LPA1
inhibition. In addition, LPA enhanced the migration of RA FLSs and expression of vascular cell adhesion molecule
and intercellular adhesion molecule on RA FLSs, which were also inhibited by an LPA1 antagonist.

Conclusions: Collectively, these results indicate that LPA–LPA1 signaling contributes to the activation of RA FLSs.
Introduction
Rheumatoid arthritis (RA) is a chronic inflammatory dis-
ease characterized by synovial hyperplasia with prolifera-
tion of fibroblast-like synoviocytes (FLSs), angiogenesis,
infiltration of inflammatory cells such as lymphocytes
and macrophages, and bone destruction of multiple joints
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[1]. FLSs are especially responsible for inflammation
through cytokine and chemokine production and are
also key cells of the invasive synovium, suggesting that
they play a major role in the initiation and perpetuation
of the destruction of inflamed joints [2].
Lysophosphatidic acid (LPA) is a bioactive lipid that

binds to its specific cell surface G protein–coupled re-
ceptors (LPA1–6). LPA is generated via the hydrolysis of
lysophosphatidylcholine by a secretory protein, autotaxin
(ATX), which exhibits lysophospholipase D activity [3].
ATX was shown to be highly expressed in tumor cells,
including neuroblastoma, breast cancer and renal cell
carcinoma [4-6]. Moreover, LPA was reported to induce
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the production of interleukin 8 (IL-8) and vascular endo-
thelial growth factor (VEGF) by cancer cells, angiogen-
esis and cancer growth [7-11].
It has previously been shown that expression of

ATX by FLSs in the RA synovium and concentration
of ATX in the RA synovial fluid are increased [12]. In
addition, LPA1–3 mRNA has been reported to be ex-
pressed in RA FLSs, and incubation with LPA in-
duced cell motility and cytokine expression by the
FLSs, indicating that LPA may contribute to the
pathogenesis of RA by stimulation of FLSs [13,14].
We recently demonstrated that treatment with an
LPA receptor 1 (LPA1) antagonist, LA-01, ameliorated
murine collagen-induced arthritis, probably via inhib-
ition of inflammatory cell migration, Th17 differenti-
ation and osteoclastogenesis [15].
In this study, we extensively analyzed the stimulatory

effects of LPA for RA FLSs, as well as the effects of an
LPA1 antagonist, LA-01, against this stimulation.

Methods
Specimens
Synovial tissues were obtained from RA patients (n = 10)
who fulfilled American College of Rheumatology criteria
[16] and from patients with osteoarthritis (OA) (n = 5).
RA patients were a median (range) of 67 years old
(45 to 80), and had a disease duration of 14 years (2 to 30)
and C-reactive protein level of 0.68 mg/dl (0.0 to
2.85). Seven patients (70%) were positive for rheuma-
toid factor, and seven (70%) were positive for antici-
trullinated protein antibodies. All patients provided
informed consent. The experimental protocol was ap-
proved by the ethics committee of the Tokyo Medical and
Dental University.

Fibroblast-like synoviocytes
Synovial tissues from RA patients were minced and in-
cubated with 0.5 mg/ml collagenase (Sigma-Aldrich, St
Louis, MO, USA) for 1 hour at 37°C, then passed through
a metal screen to obtain single-cell suspensions. Harvested
cells were plated in cell culture plates and incubated with
Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-
Aldrich) supplemented with 10% fetal calf serum (FCS)
(Sigma-Aldrich). Adherent cells were maintained in the
medium as FLSs and were used after five passages in the
following experiments [17].

RT-PCR
Total RNA was prepared from the FLSs of RA tissue
(n = 10) and OA synovial tissue (n = 5), and first-
strand cDNA was synthesized. Quantitative real-time RT-
PCR was performed as described previously [18]. cDNA
was amplified with primers for LPA1 (sense, 5′-ACC CAA
TAC TCG GAG ACT GAC TGT-3′; antisense, 5′-CGT
CAG GCT GGT GTC AAT GA-3′), LPA2 (sense, 5′-TCA
TCA TGG GCC AGT GCT ACT-3′; antisense, 5′-GTG
GGA GCT GAG CTC TTT GC-3′), LPA3 (sense, 5′-CTT
GAC TGC TTC CCT CAC CAA-3′; antisense, 5′-CGC
ATC CTC ATG ATT GAC ATG-3′), LPA4 (sense, 5′-TCC
TCA GTG GCG GTA TTT CAG-3; antisense, 5′-AAG
CAG GTG GTG GTT GCA TT-3′), LPA5 (sense, 5′-GGT
GGT GAG CGT GTA CAT GTG T-3′; antisense, 5′-AGT
GGT GCA GTG CGT AG TAG GA-3′), LPA6 (sense, 5′-
AGA ACC AAA AGA AAT GCA AAG ATT G-3′; anti-
sense, 5′-ACG GCG GGT GCA CTT C-3′) and 18S rRNA
(sense, 5′-AAC CAG ACA AAT CGC TCC AC-3′; anti-
sense, 5′-ACT CAA CAC GGG AAA CCT CA-3′). 18S
rRNA was used as an internal control to standardize the
amount of sample mRNA, and the relative expression of
real-time PCR products was determined.
Cell surface expression of lysophosphatidic acid receptor
1 on fibroblast-like synoviocytes
FLSs were stained with anti-LPA1 monoclonal antibody
(mAb) (1G6; LSBio, Seattle, WA, USA) as a first anti-
body, and phycoerythrin-conjugated anti-mouse immuno-
globulin G (IgG) antibody (BioLegend, San Diego, CA,
USA) as a second antibody. Mouse IgG2b (BioLegend) was
used as an isotype control. Cells were then analyzed by
flow cytometry (FACSCalibur; BD Biosciences, San Jose,
CA, USA).
Proliferation assay
FLSs were plated at a density of 2 × 103 cells/well in
96-well flat-bottom plates. Cells were incubated with
a selective LPA1 antagonist (LA-01 (0, 1 or 10 nM);
provided by Ono Pharmaceutical, Osaka, Japan) [15,19]
for 30 minutes and then stimulated with LPA (Cayman
Chemical, Ann Arbor, MI, USA) (0, 1 or 10 μM) in FCS-
free DMEM at 37°C for 72 hours. The proliferation of
FLSs was measured by using a cell-counting kit with
WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-
5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt;
Dojindo, Kumamoto, Japan) according to the manufac-
turer’s protocol. LPA1, LPA2 and LPA3 share 50% to
57% amino acid identity in humans and comprise the
endothelial cell differentiation gene (Edg) family of LPA
receptors [20]. The half-maximal inhibitory concentra-
tion (IC50) of LA-01 was 0.086, 2.8 and 0.90 μmol/L
for LPA1, LPA2 and LPA3, respectively, which was de-
termined by LPA1-, LPA2- or LPA3-transfected CHO
cells [15,19]. LPA4–6 receptors have been classified into
the non-Edg family of LPA receptors and are structur-
ally distant from the Edg family of LPA receptors [20].
The IC50 of LA-01 for LPA4–6 was not determined. In-
cubation with LA-01 did not affect viability of the FLSs
(data not shown).
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Figure 1 (See legend on next page.)
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Figure 1 Expression of lysophosphatidic acid receptors and the effect of lysophosphatidic acid receptor 1 on proliferation and production
of inflammatory mediators in rheumatoid arthritis fibroblast-like synoviocytes. The expression levels of lysophosphatidic acid receptor 1
through 6 (LPA1–6) mRNA in fibroblast-like synoviocytes (FLSs) derived from the rheumatoid arthritis (RA) synovium (n = 10) were compared to those in
FLSs from osteoarthritis (OA) synovium (n = 5) by real-time RT-PCR (A). Data were derived from samples from multiple individuals. Data are presented
as the mean ± SEM. *P < 0.05 for RA vs OA. Cell surface expression of LPA1 on RA (n = 5) and OA (n = 3) FLSs was analyzed by flow cytometry
(B). Filled histogram (gray): isotype control; open histogram (black line): LPA1. Representative histograms are shown. RA FLSs were cultured
with lysophosphatidic acid (LPA) for 72 hours (C). FLSs were preincubated with an LPA1 inhibitor, LA-01, for 30 minutes,then stimulated with
10 μM LPA for 72 hours (D). Control: no stimulation with LPA. Cell proliferation was measured by using a cell counting kit (C) and (D). RA FLSs
were cultured with LPA for 24 hours. Concentrations of interleukin 6 (IL-6) and chemokine (C-C motif) ligand 2 (CCL2) in the culture supernatant
were measured by enzyme-linked immunosorbent assay (ELISA) (E) and (G). FLSs were preincubated with LA-01 for 30 minutes, then stimulated with
10 μM LPA for 24 hours. Concentrations of IL-6, CCL2, vascular endothelial growth factor (VEGF), matrixmetalloproteinase (MMP-3) and CXCL12 in the
culture supernatant were measured by ELISA (F), and (H) through (K). Control: no stimulation with LPA. Data are presented as the means (±SEM) of
one of three independent experiments analyzed in triplicate. *P < 0.05 vs control or LA-01 0 nM (C) through (K).
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Enzyme-linked immunosorbent assay
RA FLSs were cultured overnight in 96-well plates (2 × 104

cells/well), then incubated with LA-01 (0, 1 or 10 nM) or
Ki16425 (2 nM) (Cayman Chemical) 30 minutes before
stimulation with LPA (10 μM) in FCS-free DMEM at
37°C for 24 hours. Protein levels of IL-6, chemokine
(C-C motif) ligand 2 (CCL2), VEGF, matrix metalloprotein-
ase 3 (MMP-3) and chemokine (C-X-C motif) ligand 12
(CXCL12) in the culture supernatant were assessed by
using ELISA kits (R&D Systems, Minneapolis, MN, USA)
according to the instructions supplied by the manufacturer.

Pseudoemperipolesis
FLSs were seeded onto 96-well plates (2 × 104 cells/well)
and cultured for 48 hours. CD4- and CD8-positive (CD4+

and CD8+, respectively) T cells and CD19+ B cells were
purified from human peripheral blood of healthy volun-
teers by using MACS microbeads (>95% purity; Miltenyi
Biotec, Auburn, CA, USA) and added to the FLS-cultured
wells (1 × 105 cells/well). The cells were treated with LA-
01 (0, 1 or 10 nM) for 30 minutes, followed by stimulation
with LPA (10 μM) in FCS-free DMEM. After 12 hours,
the wells were washed three times with medium. Pseu-
doemperipolesis was assessed by counting the number
of cells beneath FLSs in three independent fields under
a microscope.

Scrape motility assay
RA FLSs were plated at a density of 1 × 105 cells/ml in
12-well plates in DMEM with 10% FCS. After over-
night incubation, FLSs was washed twice with FCS-free
medium. The tip of a plastic pipette was drawn across
the center of the well to produce a scraped area. Culture
wells were washed twice with PBS, and free cells were re-
moved. After pretreatment with LA-01 (0, 1 or 10 nM)
for 30 minutes, cells were incubated with LPA (10 μM) in
FCS-free DMEM. A cell-free area was measured by using
ImageJ software (National Institutes of Health, Bethesda,
MD, USA) at 0 and 48 hours, and the ratio was then
calculated (cell-free area at 48 hours per cell-free area
at 0 hours).

Expression of vascular cell adhesion molecule and
intercellular adhesion molecule on RA fibroblast-like
synoviocytes
FLSs were stimulated with LPA (10 μM) 30 minutes after
adding LA-01 (0, 1 or 10 nM) in FCS-free DMEM at 37°C
for 12 hours. Cells were stained with allophycocyanin-
conjugated mAb against vascular cell adhesion molecule
(anti-VCAM, clone STA; BioLegend) or phycoerythrin-
conjugated mAb against intracellular adhesion molecule
(anti-ICAM, clone HA58; eBioscience, San Diego, CA,
USA). Allophycocyanin- or phycoerythrin-conjugated
mouse IgG1 (BioLegend) was used as an isotype control.
Cells were then analyzed by flow cytometry (Accuri C6
Flow Cytometer; BD Biosciences).

Statistical analysis
Data are expressed as mean ± standard error of the
mean (SEM). The comparison of the data from the two
groups was conducted by using Student’s t-test. P-values
less than 0.05 were considered significant.

Results
Expression of lysophosphatidic acid receptors in RA
fibroblast-like synoviocytes
The expression of LPA1–6 mRNA in FLSs from RA and
OA patients was analyzed by quantitative real-time RT-
PCR. The expression of LPA1 mRNA in RA FLSs was
significantly higher than that in OA FLSs (Figure 1A).
The expression of LPA3 and LPA4 was also significantly
higher in RA FLSs than that in OA FLSs, although the
ratios of LPA3 and LPA4 expression in RA FLSs to OA
FLSs were smaller than those of LPA1 expression. Cell
surface LPA1 expression was analyzed by flow cytometry.
RA FLSs were expressed LPA1 on the cell surface, and
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Figure 2 (See legend on next page.)
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Figure 2 Effect of lysophosphatidic acid receptor 1 on pseudoemperipolesis and migration of rheumatoid arthritis fibroblast-like
synoviocytes. After preincubation of cocultured rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) and CD4+ T cells (A) and (B) or
CD8+ T cells (C) and (D) or CD19+ B cells (E) and (F) with a lysophosphatidic acid (LPA) receptor 1 inhibitor (LA-01; 0, 1 or 10 nM) for 30
minutes, the cells were stimulated with 10 μM LPA for 12 hours. Control: no stimulation with LPA. After the cells were washed, the number
of lymphocytes beneath FLSs was counted. Representative photomicrographs of three independent experiments are shown (A, C and E). Arrows
indicate the lymphocytes beneath FLSs. Original magnification, ×200. Data on the number of lymphocytes beneath FLSs are presented as one of
three independent experiments analyzed in triplicate (B, D, and F). Data are presented as the mean ± SEM. *P < 0.05 vs control or LA-01 0 nM (B, D, F).
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the expression level was substantially higher than that of
OA FLSs (Figure 1B).

Lysophosphatidic acid receptor 1 inhibitor suppressed
lysophosphatidic acid–induced proliferation and cytokine
production in RA fibroblast-like synoviocytes
We analyzed the effects of LPA on the proliferation
and production of inflammatory mediators by RA FLSs.
Stimulation with LPA dose-dependently induced the
proliferation of FLSs (Figure 1C). LPA stimulation also
induced the production of IL-6 and CCL2 from FLSs in a
dose-dependent manner (Figures 1E and 1G), which sup-
ports a previous report that LPA upregulated IL-6 mRNA
expression by RA FLSs [18]. Stimulation with LPA also
induced the production of VEGF and MMP-3 by RA
FLSs in vitro (Figures 1I and 1J).
Next, we analyzed the effect of an LPA1 inhibitor on

LPA stimulation for RA FLSs. Enhanced cell prolifera-
tion by 10 μM LPA was significantly suppressed by
LA-01, the LPA1-selective antagonist (Figure 1D). The
treatment with LA-01 significantly reduced the production
of IL-6, CCL2, VEGF and MMP-3 by LPA-stimulated RA
FLSs (Figures 1F and 1H through 1J). In contrast, the
production of CXCL12 by RA FLSs was not altered by
stimulation with LPA (Figure 1K). We used Ki16425,
another LPA1 antagonist, to confirm the effects of LPA1

inhibition on IL-6 production from LPA-stimulated RA
FLSs. Incubation with Ki16425 suppressed IL-6 produc-
tion from LPA-stimulated RA FLSs as well as LA-01
(IL-6 concentrations: vehicle = 299.413 ± 28.084 pg/ml;
Ki16425 = 116.785 ± 11.162 pg/ml (P < 0.05 vs vehicle);
LA-01 = 145.715 ± 15.921 pg/ml (P < 0.05 vs vehicle)).
These results suggest that LPA–LPA1 signaling plays im-
portant roles in proliferation and cytokine production of
RA FLSs in vitro.

LPA–LPA1 signaling promoted pseudoemperipolesis
RA FLSs have been shown to promote the spontaneous
migration of leukocytes beneath them, a process termed
pseudoemperipolesis [21]. We examined the effect of
LPA on pseudoemperipolesis. Stimulation with 10 μM
LPA significantly increased the number of CD4+ and
CD8+ T cells, as well as CD19+ B cells, beneath RA FLSs
(Figures 2A to 2F). Moreover, incubation with LA-01
suppressed the LPA-enhanced pseudoemperipolesis of
CD4+ and CD8+ T and CD19+ B cells (Figures 2A
through 2F), suggesting that interaction of LPA and LPA1

promotes pseudoemperipolesis of leukocytes.

LPA–LPA1 signaling promoted cell motility of RA
fibroblast-like synoviocytes
We also analyzed the effect of LPA1 on RA FLS migration
by scrape motility assay. Incubation with 10 μM LPA sig-
nificantly decreased the cell-free area, indicating that LPA
induced cell migration in vitro (Figures 3A and 3B), as re-
ported previously [22]. In addition, LA-01 significantly in-
creased the cell-free area of RA FLSs (Figures 3A and 3B),
suggesting that LPA–LPA1 signaling also contributes to the
promotion of RA FLS motility.

LPA–LPA1 signaling induced adhesion molecule
expression on RA fibroblast-like synoviocytes
It has been reported that signaling from VCAM and
ICAM in RA FLSs supports pseudoemperipolesis [21].
Therefore, we next analyzed the expression of VCAM
and ICAM on RA FLSs by flow cytometry. We found
that stimulation with 10 μM LPA induced the expression
of VCAM and ICAM on RA FLSs (Figure 4). Moreover,
LA-01 decreased the expression of VCAM and ICAM
induced by LPA on RA FLSs (Figure 4). However, the
expression of E-selectin on RA FLSs was not altered by
LPA simulation (data not shown).

Discussion
In this study, we found that LPA1 was highly expressed in
RA FLSs. LPA stimulated RA FLSs to enhance prolifera-
tion, production of inflammatory mediators, pseudoem-
peripolesis, migration and the expression of adhesion
molecules, which are attributable to signaling through
LPA1.
RA FLSs express inflammatory cytokines, chemokines

and matrix-degrading enzymes, which contribute to the
pathogenesis of RA. LPA has been reported to induce
IL-6 mRNA expression on RA FLSs, as well as cell mo-
tility [13]. However, the corresponding LPA receptor on
RA FLSs has not been identified. We show that LPA
augmented IL-6, CCL2, VEGF and MMP-3 production
by RA FLSs. Moreover, the LPA-induced production of
the inflammatory mediators was inhibited by a LPA1-
selective inhibitor. Therefore, the LPA–LPA1 cascade plays
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an important role in cytokine, chemokine and matrix-
degrading enzyme production by RA FLSs. Although
IC50 of LA-01 was 86 nM, which was determined by
using LPA1-transfected CHO cells, 10 nM LA-01 sig-
nificantly inhibited stimulation of LPA in RA FLSs. The
IC50 may be dependent on cell type or on the expres-
sion level of LPA1.
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FLSs support pseudoemperipolesis [21]. Our results in-
dicate that LPA upregulated the expression of VCAM
and ICAM on RA FLSs, which was blocked by the LPA1

antagonist. Thus, LPA may enhance pseudoemperipolesis
via the upregulation of VCAM and ICAM expression on
RA FLSs through LPA1. Interestingly, CXCL12 produc-
tion by RA FLSs was not altered by LPA simulation.
Stimulation of lymphocytes by LPA via LPA1 may also
contribute to the enhanced pseudoemperipolesis. In this
regard, it has been reported that LPA induced chemo-
kinesis in T cells [25] and lymphocyte transmigration
through high endothelial venules [26,27]. Further studies
are needed to clarify the effects of LPA–LPA1 signaling for
the lymphocytes on pseudoemperipolesis.
The hyperplastic rheumatoid pannus is characterized

by an overabundance of FLSs [2]. This cellular excess
stems largely from an imbalance between the prolifera-
tion and apoptosis of FLSs [2]. The migration of RA
FLSs may also contribute to pannus formation [2]. Our
results show that LPA induced the proliferation and mi-
gration of FLSs, which was inhibited by the LPA1 antag-
onist. Moreover, in a recent study, researchers reported
that LPA suppressed tumor necrosis factor–induced
apoptosis on RA FLSs via LPA1 [28]. Therefore, it is
suggested that the LPA–LPA1 signaling also contributed
to the cellular excess and migration of FLSs in the RA
synovium.
In this study, we show that there are important roles

of LPA–LPA1 signaling on RA FLS stimulation. How-
ever, the effects of LPA signals via LPA2–6 remain un-
clear, although RA FLSs also expressed LPA2–6. Further
studies are warranted to elucidate the roles of LPA2–6

in LPA stimulation of FLSs by using each of the LPA
receptor–specific antagonists or FLSs from each LPA
receptor–deficient mouse.
It was shown that conditional genetic ablation of ATX,

which generates LPA via hydrolysis of lysophosphatidyl-
choline, in mesenchymal cells resulted in disease attenu-
ation in animal models of arthritis [12]. We have also
found that LPA1 is essential for the development of arth-
ritis in collagen-induced arthritis [15]. The ATX–LPA–
LPA1 axis may play an important role in the development
of arthritis.

Conclusion
Our study suggests that LPA–LPA1 signaling in FLSs may
contribute to the pathogenesis of RA by inducing prolifera-
tion, production of inflammatory mediators, pseudoemper-
ipolesis and migration on RA FLSs. Thus, LPA1 could be a
promising therapeutic target for RA.
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