148 research outputs found

    Color superconductivity on the lattice -- analytic predictions from QCD in a small box

    Full text link
    We investigate color superconductivity on the lattice using the gap equation for the Cooper pair condensate. The weak coupling analysis is justified by choosing the physical size of the lattice to be smaller than the QCD scale, while keeping the aspect ratio of the lattice small enough to suppress thermal excitations. In the vicinity of the critical coupling constant that separates the superconducting phase and the normal phase, the gap equation can be linearized, and by solving the corresponding eigenvalue problem, we obtain the critical point and the Cooper pair condensate without assuming its explicit form. The momentum components of the condensate suggest spatially isotropic s-wave superconductivity with Cooper pairs formed by quarks near the Fermi surface. The chiral symmetry in the massless limit is spontaneously broken by the Cooper pair condensate, which turns out to be dominated by the scalar and the pseudo-scalar components. Our results provide useful predictions, in particular, for future lattice simulations based on methods to overcome the sign problem such as the complex Langevin method.Comment: 30 pages, 15 figures, 1 table, v2: A.3 modified, Ref. [57] adde

    Nongyrotropic electron velocity distribution functions near the lunar surface

    Get PDF
    We have analyzed nongyrotropic electron velocity distribution functions (VDFs) obtained near the lunar surface. Electron VDFs, measured at ∼10–100 km altitude by Kaguya in both the solar wind and the Earth's magnetosphere, exhibit nongyrotropic empty regions associated with the ‘gyroloss’ effect; i.e., electron absorption by the lunar surface combined with electron gyromotion. Particle-trace calculations allow us to derive theoretical forbidden regions in the electron VDFs, thereby taking into account the modifications due to nonuniform magnetic fields caused by diamagnetic-current systems, lunar-surface charging, and electric fields perpendicular to the magnetic field. Comparison between the observed empty regions with the theoretically derived forbidden regions suggests that various components modify the characteristics of the nongyrotropic electron VDFs depending on the ambient-plasma conditions. On the lunar nightside in the magnetotail lobes, negative surface potentials slightly reduce the size of the forbidden regions, but there are no distinct effects of either the diamagnetic current or perpendicular electric fields. On the dayside in the solar wind, the observations suggest the presence of either the diamagnetic-current or solar wind convection electric field effects, or both. In the terrestrial plasma sheet, all three mechanisms can substantially modify the characteristics of the forbidden regions. The observations imply the presence of a local electric field of at least 5 mV/m although the mechanism responsible for production of such a strong electric field is unknown. Analysis of nongyrotropic VDFs associated with the gyroloss effect near solid surfaces can promote a better understanding of the near-surface plasma environment and of plasma–solid-surface interactions

    Giant Pulsations Excited by a Steep Earthward Gradient of Proton Phase Space Density: Arase Observation

    Get PDF
    AbstractWe present observational evidence of drift resonance between westward propagating odd mode standing ultralow frequency waves and energetic protons. Compressional ∼13 mHz (Pc4 band) waves and proton flux oscillations at >50 keV were detected at ∼03 hr magnetic local time by the Arase satellite on 15 April 2017. The azimuthal wave number (m number) is estimated to be ∼−50 from ground observations, while the theory of drift resonance gives m ∼− 49 for odd mode waves and ∼110‐keV protons, providing evidence that the drift resonance indeed took place in this event. We also found a steep earthward gradient of proton phase space density, which can quantitatively explain the wave excitation. The observed waves show typical features of giant pulsations (Pgs), regarding local time, m number, and flux oscillations. This study, therefore, has great implications to the field line mode structure and excitation mechanism of Pgs

    Magnetic field and energetic particle flux oscillations and high- frequency waves deep in the inner magnetosphere during substorm dipolarization: ERG observations

    Get PDF
    Using Exploration of energization and Radiation in Geospace (ERG or Arase) spacecraft data, we studied low-frequency magnetic field and energetic particle flux oscillations and high-frequency waves deep in the inner magnetosphere at a radial distance of ~4–5 during substorm dipolarization. The magnetic field oscillated alternately between dipole-like and taillike configuration at a period of 1 min during dipolarization. When the magnetic field was dipole-like, the parallel magnetic component of the Pi2 waves was at trough. Both energetic ion and electron fluxes with a few to tens of kiloelectronvolts enhanced out of phase, indicating that magnetosonic waves were in slow mode. Field-aligned currents also oscillated. These observations are consistent with signatures of ballooning instability. In addition, we found that broadband waves from the Pi1 range to above the electron cyclotron frequency tended to appear intermittently in the central plasma sheet near dipole-like configuration

    A two-stage deflection system for the extension of the energy coverage in space plasma three-dimensional measurements

    No full text
    Abstract The in situ measurement of charged particles plays a key role in understanding space plasma physics. Velocity distribution functions of ions and electrons have been acquired with electrostatic analyzers onboard spacecraft. Since conventional energy analyzers (e.g., top-hat electrostatic analyzers) have essentially a two-dimensional field of view, the solid angle coverage is achieved with the aid of spacecraft spin motion or with additional entrance deflection systems in front of the electrostatic analyzer. In the latter case, however, the full angular scan is realized only in the lower energy range (typically only up to 5–15 keV/e), due to the limitation of the electric field applied to the deflector. Here we propose a novel deflection system for extending the energy coverage up to tens of keV. This is especially useful for plasma observations in situations where the anisotropy of the energetic part (> 10 keV) of charged particles plays an essential role in plasma dynamics and hence is of significant interest. Graphical Abstrac

    Backscattered energetic neutral atoms from the Moon in the Earth's plasma sheet observed by Chandarayaan-1/Sub-keV Atom Reflecting Analyzer instrument

    Get PDF
    We present the observations of energetic neutral atoms (ENAs) produced at the lunar surface in the Earth's magnetotail. When the Moon was located in the terrestrial plasma sheet, Chandrayaan-1 Energetic Neutrals Analyzer (CENA) detected hydrogen ENAs from the Moon. Analysis of the data from CENA together with the Solar Wind Monitor (SWIM) onboard Chandrayaan-1 reveals the characteristic energy of the observed ENA energy spectrum (the e-folding energy of the distribution function) ∼100 eV and the ENA backscattering ratio (defined as the ratio of upward ENA flux to downward proton flux) <∼0.1. These characteristics are similar to those of the backscattered ENAs in the solar wind, suggesting that CENA detected plasma sheet particles backscattered as ENAs from the lunar surface. The observed ENA backscattering ratio in the plasma sheet exhibits no significant difference in the Southern Hemisphere, where a large and strong magnetized region exists, compared with that in the Northern Hemisphere. This is contrary to the CENA observations in the solar wind, when the backscattering ratio drops by ∼50% in the Southern Hemisphere. Our analysis and test particle simulations suggest that magnetic shielding of the lunar surface in the plasma sheet is less effective than in the solar wind due to the broad velocity distributions of the plasma sheet protons

    BepiColombo 搭載イオン質量分析器 MPPE-MSA のソフトウェア開発

    No full text

    火星大気散逸探査ミッション用イオン同位体分析器の開発

    No full text
    corecore