151 research outputs found

    Simultaneous retrieval of atmospheric CO_2 and light path modification from space-based spectroscopic observations of greenhouse gases: methodology and application to GOSAT measurements over TCCON sites

    Get PDF
    This paper presents an improved photon path length probability density function method that permits simultaneous retrievals of column-average greenhouse gas mole fractions and light path modifications through the atmosphere when processing high-resolution radiance spectra acquired from space. We primarily describe the methodology and retrieval setup and then apply them to the processing of spectra measured by the Greenhouse gases Observing SATellite (GOSAT). We have demonstrated substantial improvements of the data processing with simultaneous carbon dioxide and light path retrievals and reasonable agreement of the satellite-based retrievals against ground-based Fourier transform spectrometer measurements provided by the Total Carbon Column Observing Network (TCCON)

    Controlling factors of large-scale harmful algal blooms with Karenia selliformis after record-breaking marine heatwaves

    Get PDF
    Unprecedented, large-scale harmful algal blooms (HABs) dominated by Karenia selliformis occurred off the southeastern coast of Hokkaido, Japan, from late September to early November 2021, about a month after intense and extensive marine heatwaves (MHWs) had subsided. The aims of the present study were to understand the mechanism of development, maintenance, and decay of the HABs as well as to investigate the effect of the MHWs on the HABs. We developed a one-dimensional, lower trophic-level ecosystem model (NEMURO+) to simulate the HABs. The model successfully simulated the 2021 HABs and indicated that their development, maintenance, and decay were controlled primarily by changes of water temperature. Nitrate supply from subsurface layers by seasonal vertical diffusion in autumn also helped to maintain the HABs. Vertical diffusion following MHWs in 2021 contributed to the long duration of the preferred temperature for K. selliformis and the occurrence of pre-bloom of K. selliformis, resulting in preconditioning and accelerating the HABs. However, simulations for normal years (i.e., the climatological mean during 2003–2018) showed that HABs could have occurred, even in the absence of MHWs. The simulations indicated that massive blooms of other phytoplankton species (e.g., diatoms) would not have occurred in 2021, even in the absence of a K. selliformis bloom. The implication was that the HABs in 2021 were the species-specific responses of K. selliformis. The proposed mechanism of the HABs was peculiar to our study area and differed from that previously reported for other K. selliformis blooms. Specifically, the preferred temperature for the HABs of K. selliformis was clearly lower than the previously reported preferred temperature of K. selliformis; thus, the physiological characteristics of the K. selliformis that bloomed in our study area differed from those of other K. selliformis strains. These discoveries provide the first evidence to explain how MHWs affect HABs, and to understand how inter-regional dissimilarities of K. selliformis can lead to large-scale, devastating outbreaks under different oceanographic conditions

    Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat

    Get PDF
    Food selection is essential for metabolic homeostasis and is influenced by nutritional state, food palatability, and social factors such as stress. However, the mechanism responsible for selection between a high-carbohydrate diet (HCD) and a high-fat diet (HFD) remains unknown. Here, we show that activation of a subset of corticotropin-releasing hormone (CRH)-positive neurons in the rostral region of the paraventricular hypothalamus (PVH) induces selection of an HCD over an HFD in mice during refeeding after fasting, resulting in a rapid recovery from the change in ketone metabolism. These neurons manifest activation of AMP-activated protein kinase (AMPK) during food deprivation, and this activation is necessary and sufficient for selection of an HCD over an HFD. Furthermore, this effect is mediated by carnitine palmitoyltransferase 1c (CPT1c). Thus, our results identify the specific neurons and intracellular signaling pathway responsible for regulation of the complex behavior of selection between an HCD and an HFD
    • …
    corecore