1,398 research outputs found

    Widely Extended [OIII] 88 um Line Emission around the 30 Doradus Region Revealed with AKARI FIS-FTS

    Full text link
    We present the distribution map of the far-infrared [OIII] 88um line emission around the 30 Doradus (30 Dor) region in the Large Magellanic Cloud obtained with the Fourier Transform Spectrometer of the Far-Infrared Surveyor onboard AKARI. The map reveals that the [OIII] emission is widely distributed by more than 10' around the super star cluster R136, implying that the 30 Dor region is affluent with interstellar radiation field hard enough to ionize O^{2+}. The observed [OIII] line intensities are as high as (1-2) x 10^{-6} W m^{-2} sr^{-1} on the peripheral regions 4'-5' away from the center of 30 Dor, which requires gas densities of 60-100 cm^{-3}. However the observed size of the distribution of the [OIII] emission is too large to be explained by massive stars in the 30 Dor region enshrouded by clouds with the constant gas density of 10^2 cm^{-3}. Therefore the surrounding structure is likely to be highly clumpy. We also find a global correlation between the [OIII] and the far-infrared continuum emission, suggesting that the gas and dust are well mixed in the highly-ionized region where the dust survives in clumpy dense clouds shielded from the energetic photons.Comment: 17 pages, 9 figures, accepted for publication in Publications of the Astronomical Society of Japan (PASJ

    Photochemical Reactions of Ge-Related Centers in Germanosilicate Glass Preparted by Sol-Gel Process (SOLID STATE CHEMISTRY-Amorphous Materials)

    Get PDF
    Germanosilicate glasses are prepared by a sol-gel method and the UV-photosensitivity of glasses is investigated by optical absorption, ESR, and photoluminescence measurements. Large changes in optical absorption are observed for the sol-gel-derived glass by the ultraviolet laser irradiation; a decrease in 5-eV band and increases in absorption around 4.5 and > 5.7 eV. Photoluminescence intensity under 248- nm excitation decreases with an increase in laser fluence and also with decrease in the 5-eV band. This result strongly implies the novel photochemical reaction from Ge2+ to Ge E' induced by excimer laser irradiation

    Oxygen minimum zone: An important oceanographic habitat for deep-diving northern elephant seals, Mirounga angustirostris.

    Get PDF
    Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota-poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal-mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish (Icosteus aenigmaticus) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals

    Asymmetric leaves2 and elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana

    Get PDF
    Leaf primordia are generated around the shoot apical meristem. Mutation of the ASYMMETRIC LEAVES2 (AS2) gene of Arabidopsis thaliana results in defects in repression of the meristematic and indeterminate state, establishment of adaxial-abaxial polarity and left-right symmetry in leaves. AS2 represses transcription of meristem-specific class 1 KNOX homeobox genes and of the abaxial-determinant genes ETTIN/ARF3, KANADI2 and YABBY5. To clarify the role of AS2 in the establishment of leaf polarity, we isolated mutations that enhanced the polarity defects associated with as2. We describe here the enhancer-of-asymmetric-leaves-two1 (east1) mutation, which caused the formation of filamentous leaves with abaxialized epidermis on the as2-1 background. Levels of transcripts of class 1 KNOX and abaxial-determinant genes were markedly higher in as2-1 east1-1 mutant plants than in the wild-type and corresponding single-mutant plants. EAST1 encodes the histone acetyltransferase ELONGATA3 (ELO3), a component of the Elongator complex. Genetic analysis, using mutations in genes involved in the biogenesis of a trans-acting small interfering RNA (ta-siRNA), revealed that ELO3 mediated establishment of leaf polarity independently of AS2 and the ta-siRNA-related pathway. Treatment with an inhibitor of histone deacetylases (HDACs) caused additive polarity defects in as2-1 east1-1 mutant plants, suggesting the operation of an ELO3 pathway, independent of the HDAC pathway, in the determination of polarity. We propose that multiple pathways play important roles in repression of the expression of class 1 KNOX and abaxial-determinant genes in the development of the adaxial domain of leaves and, thus, in the establishment of leaf polarity

    Enucleation assisted with filler for open-globe injury

    Get PDF
    In cases of severe open-globe injury, it is often difficult to reconstruct the globe and maintain visual acuity. Ocular globe enucleation may decrease the risk of sympathetic ophthalmia in the fellow eye. However, the surgical procedure is difficult to perform with an open globe, because the injured globe is inclined to collapse. We report the case of an enucleation for an open-globe injury in which we used alginate, which is often used for dental impressions, as filler for the collapsed globe. We were able to maintain the resistance of the globe sufficiently well enough to perform the procedure easily and without complication. Thus, alginate may be a novel aid to assist in enucleation by preserving globe resistance
    corecore