40 research outputs found

    Functional analysis of HOXD9 in human gliomas and glioma cancer stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>HOX </it>genes encode a family of homeodomain-containing transcription factors involved in the determination of cell fate and identity during embryonic development. They also behave as oncogenes in some malignancies.</p> <p>Results</p> <p>In this study, we found high expression of the <it>HOXD9 </it>gene transcript in glioma cell lines and human glioma tissues by quantitative real-time PCR. Using immunohistochemistry, we observed HOXD9 protein expression in human brain tumor tissues, including astrocytomas and glioblastomas. To investigate the role of <it>HOXD9 </it>in gliomas, we silenced its expression in the glioma cell line U87 using <it>HOXD9</it>-specific siRNA, and observed decreased cell proliferation, cell cycle arrest, and induction of apoptosis. It was suggested that <it>HOXD9 </it>contributes to both cell proliferation and/or cell survival. The <it>HOXD9 </it>gene was highly expressed in a side population (SP) of SK-MG-1 cells that was previously identified as an enriched-cell fraction of glioma cancer stem-like cells. <it>HOXD9 </it>siRNA treatment of SK-MG-1 SP cells resulted in reduced cell proliferation. Finally, we cultured human glioma cancer stem cells (GCSCs) from patient specimens found with high expression of <it>HOXD9 </it>in GCSCs compared with normal astrocyte cells and neural stem/progenitor cells (NSPCs).</p> <p>Conclusions</p> <p>Our results suggest that <it>HOXD9 </it>may be a novel marker of GCSCs and cell proliferation and/or survival factor in gliomas and glioma cancer stem-like cells, and a potential therapeutic target.</p

    A case of VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) with decreased oxidative stress levels after oral prednisone and tocilizumab treatment

    Get PDF
    VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome has recently been described as an autoinflammatory disease associated with severe adult-onset inflammatory manifestations. The various clinical manifestations include recurrent high-grade fever, neutrophilic dermatoses, cutaneous vasculitis, chondritis of the ear and nose, pulmonary infiltrates, cytopenia, uveitis, gastrointestinal pain or inflammation, aortitis, hepatosplenomegaly, and hematological disorders. VEXAS syndrome is caused by somatic mutations of the ubiquitin-like modifier activating enzyme 1 (UBA1) gene in myeloid-lineage cells. It is characterized by vacuolated myeloid and erythroid progenitor cells seen by bone marrow biopsy. We report the case of a 64-year-old Japanese man with VEXAS syndrome. At age 63, he was referred to us with a recurrent erythema on the hands associated with a general fever of 38–40°C that had persisted for 4 or 5 days and had recurred about once a month for a year. The skin rash appeared 2 or 3 days after the onset of each fever episode. Computed tomography (CT) of the chest revealed bilateral hilar lymphadenopathy (BHL), and the mediastinal lymph nodes were swollen. Sarcoidosis was suspected but was ruled out by several tests. Laboratory examinations showed elevated inflammatory markers. Bone marrow examination showed the vacuolization of myeloid precursor cells. A skin biopsy revealed dense dermal, predominantly perivascular, infiltrates. These consisted of mature neutrophils admixed with myeloperoxidase-positive CD163-positive myeloid cells, lymphoid cells and eosinophils. Sequencing analysis identified the somatic UBA1 variant c.122T &gt; C, which results in p.Met41Thr. Treatment with oral prednisone (15 mg/day) and monthly intravenous tocilizumab injections (400 mg) completely resolved the symptoms. Neutrophils are a major source of reactive oxygen species, and the present case demonstrated numerous neutrophilic infiltrates. We hypothesize that the patient might have had elevated derivatives of reactive oxygen metabolites (d-ROMs). d-ROM quantification is a simple method for detecting hydroperoxide levels, and clinical trials have proven it useful for evaluating oxidative stress. In this study, we measured serum d-ROM before and after oral prednisone and tocilizumab treatment. The levels decreased significantly during treatment

    RNA-Binding Protein Musashi1 Modulates Glioma Cell Growth through the Post-Transcriptional Regulation of Notch and PI3 Kinase/Akt Signaling Pathways

    Get PDF
    Musashi1 (MSI1) is an RNA-binding protein that plays critical roles in nervous-system development and stem-cell self-renewal. Here, we examined its role in the progression of glioma. Short hairpin RNA (shRNA)-based MSI1-knock down (KD) in glioblastoma and medulloblastoma cells resulted in a significantly lower number of self renewing colony on day 30 (a 65% reduction), compared with non-silencing shRNA-treated control cells, indicative of an inhibitory effect of MSI1-KD on tumor cell growth and survival. Immunocytochemical staining of the MSI1-KD glioblastoma cells indicated that they ectopically expressed metaphase markers. In addition, a 2.2-fold increase in the number of MSI1-KD cells in the G2/M phase was observed. Thus, MSI1-KD caused the prolongation of mitosis and reduced the cell survival, although the expression of activated Caspase-3 was unaltered. We further showed that MSI1-KD glioblastoma cells xenografted into the brains of NOD/SCID mice formed tumors that were 96.6% smaller, as measured by a bioluminescence imaging system (BLI), than non-KD cells, and the host survival was longer (49.3±6.1 days vs. 33.6±3.6 days; P<0.01). These findings and other cell biological analyses suggested that the reduction of MSI1 in glioma cells prolonged the cell cycle by inducing the accumulation of Cyclin B1. Furthermore, MSI1-KD reduced the activities of the Notch and PI3 kinase-Akt signaling pathways, through the up-regulation of Numb and PTEN, respectively. Exposure of glioma cells to chemical inhibitors of these pathways reduced the number of spheres and living cells, as did MSI1-KD. These results suggest that MSI1 increases the growth and/or survival of certain types of glioma cells by promoting the activation of both Notch and PI3 kinase/Akt signaling

    Isotope production in proton-, deuteron-, and carbon-induced reactions on Nb 93 at 113 MeV/nucleon

    Get PDF
    Isotope-production cross sections for p-, d-, and C-induced spallation reactions on Nb93 at 113 MeV/nucleon were measured using the inverse-kinematics method employing secondary targets of CH2, CD2, and C. The measured cross sections for Mo90, Nb90, Y86,88 produced by p-induced reactions were found to be consistent with those measured by the conventional activation method. We performed benchmark tests of the reaction models INCL-4.6, JQMD, and JQMD-2.0 implemented in the Particle and Heavy Ion Transport code System (PHITS) and of the nuclear data libraries JENDL-4.0/HE, TENDL-2017, and ENDF/B-VIII.0. The model calculations also showed generally good agreement with the measured isotope-production cross sections for p-, d-, and C-induced reactions. It also turns out that, among the three nuclear data libraries, JENDL-4.0/HE provides the best agreement with the measured data for the p-induced reactions. We compared the present Nb93 data with the Zr93 data, that were measured previously by the same inverse kinematics method (Kawase et al., Prog. Theor. Exp. Phys. 2017, 093D03 (2017)2050-391110.1093/ptep/ptx110), with particular attention to the effect of neutron-shell closure on isotope production in p- and d-induced spallation reactions. The isotopic distributions of the measured production cross sections in the Zr93 data showed noticeable jumps at neutron number N=50 in the isotopic chains of ΔZ=0 and -1, whereas no such jump appeared in isotopic chain of ΔZ=0 in the Nb93 data. From INCL-4.6 + GEM calculations, we found that the jump formed in the evaporation process is smeared out by the intranuclear cascade component in Nb91 produced by the Nb93(p,p2n) and (d,d2n) reactions on Nb93. Moreover, for Nb93, the distribution of the element-production cross sections as a function of the change in proton number ΔZ is shifted to smaller ΔZ than for Zr93, because the excited Nb prefragments generated by the cascade process are more likely to emit protons than the excited Zr prefragments, due to the smaller proton-separation energies of the Nb isotopes

    Coulomb breakup reactions of 93,94 Zr in inverse kinematics

    Get PDF
    Coulomb breakup reactions of 93,94 Zr have been studied in inverse kinematics at incident beam energies of about 200 MeV/nucleon in order to evaluate neutron capture reaction methods. The 93 Zr(n,γ) 94 Zr reaction is particularly important as a candidate nuclear transmutation reaction for the long-lived fission product 93 Zr in nuclear power plants. One- and two-neutron removal cross sections on Pb and C targets were measured to deduce the inclusive Coulomb breakup cross sections, 375 ± 29 (stat.) ± 30 (syst.) and 403 ± 26 (stat.) ± 31 (syst.) mb for 93 Zr and 94 Zr, respectively. The results are compared with estimates using the standard Lorentzian model and microscopic calculations. The results reveal a possible contribution of the pygmy dipole resonance or giant quadrupole resonance in the Coulomb breakup reactions of 94 Zr

    Algorithmic Versus Expert Human Interpretation of Instantaneous Wave-Free Ratio Coronary Pressure-Wire Pull Back Data

    Get PDF
    Objectives The aim of this study was to investigate whether algorithmic interpretation (AI) of instantaneous wave-free ratio (iFR) pressure-wire pull back data would be noninferior to expert human interpretation. Background Interpretation of iFR pressure-wire pull back data can be complex and is subjective. Methods Fifteen human experts interpreted 1,008 iFR pull back traces (691 unique, 317 duplicate). For each trace, experts determined the hemodynamic appropriateness for percutaneous coronary intervention (PCI) and, in such cases, the optimal physiological strategy for PCI. The heart team (HT) interpretation was determined by consensus of the individual expert opinions. The same 1,008 pull back traces were also interpreted algorithmically. The coprimary hypotheses of this study were that AI would be noninferior to the interpretation of the median expert human in determining: 1) the hemodynamic appropriateness for PCI; and 2) the physiological strategy for PCI. Results Regarding the hemodynamic appropriateness for PCI, the median expert human demonstrated 89.3% agreement with the HT in comparison with 89.4% for AI (p < 0.01 for noninferiority). Across the 372 cases judged as hemodynamically appropriate for PCI according to the HT, the median expert human demonstrated 88.8% agreement with the HT in comparison with 89.7% for AI (p < 0.0001 for noninferiority). On reproducibility testing, the HT opinion itself changed 1 in 10 times for both the appropriateness for PCI and the physiological PCI strategy. In contrast, AI showed no change. Conclusions AI of iFR pressure-wire pull back data was noninferior to expert human interpretation in determining both the hemodynamic appropriateness for PCI and the optimal physiological strategy for PCI

    Cross sections for nuclide production in proton- and deuteron-induced reactions on 93

    Full text link
    Isotopic production cross sections were measured for proton- and deuteron-induced reactions on 93Nb by means of the inverse kinematics method at RIKEN Radioactive Isotope Beam Factory. The measured production cross sections of residual nuclei in the reaction 93Nb + p at 113 MeV/u were compared with previous data measured by the conventional activation method in the proton energy range between 46 and 249 MeV. The present inverse kinematics data of four reaction products (90Mo, 90Nb, 88Y, and 86Y) were in good agreement with the data of activation measurement. Also, the model calculations with PHITS describing the intra-nuclear cascade and evaporation processes generally well reproduced the measured isotopic production cross sections

    Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137

    Full text link
    Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes

    Characteristic findings in the human fetus vestibule: A human temporal bone study

    No full text
    Objective The “collapse,” a highly flexed, dented, or caved membrane between the endo- and peri-lymph of the saccule and utricle in adults, is considered as a morphological aspect of Ménière's syndrome. Likewise, when mesh-like tissues in the perilymphatic space are damaged or lost, the endothelium loses mechanical support and causes nerve irritation. However, these morphologies were not examined in fetuses. Methods By using histological sections from 25 human fetuses (crown-rump length[CRL] 82–372 mm; approximately 12–40 weeks), morphologies of the perilymphatic-endolymphatic border membrane and the mesh-like tissue around the endothelium were examined. Results The highly flexed or caved membrane between the endo- and peri-lymphatic spaces was usually seen in the growing saccule and utricle of fetuses, especially at junctions between the utricle and ampulla at midterm. Likewise, the perilymphatic space around the saccule, utricle and semicircular ducts often lost the mesh-like tissues. The residual mesh-like tissue supported the veins, especially in the semicircular canal. Conclusion Within a cartilaginous or bony room showing a limited growth in size but containing increased perilymph, the growing endothelium appeared to become wavy. Owing to a difference in growth rates between the utricle and semicircular duct, the dentation tended to be more frequently seen at junctions than at free margins of the utricle. The difference in site and gestational age suggested that the deformity was not “pathological” but occurred due to unbalanced growth of the border membrane. Nevertheless, the possibility that the deformed membrane in fetuses was an artifact caused by delayed fixation is not deniable.Depto. de Anatomía y EmbriologíaFac. de MedicinaTRUEpu
    corecore