2,208 research outputs found

    Stochastic Tunneling of Two Mutations in a Population of Cancer Cells

    Get PDF
    Cancer initiation, progression, and the emergence of drug resistance are driven by specific genetic and/or epigenetic alterations such as point mutations, structural alterations, DNA methylation and histone modification changes. These alterations may confer advantageous, deleterious or neutral effects to mutated cells. Previous studies showed that cells harboring two particular alterations may arise in a fixed-size population even in the absence of an intermediate state in which cells harboring only the first alteration take over the population; this phenomenon is called stochastic tunneling. Here, we investigated a stochastic Moran model in which two alterations emerge in a cell population of fixed size. We developed a novel approach to comprehensively describe the evolutionary dynamics of stochastic tunneling of two mutations. We considered the scenarios of large mutation rates and various fitness values and validated the accuracy of the mathematical predictions with exact stochastic computer simulations. Our theory is applicable to situations in which two alterations are accumulated in a fixed-size population of binary dividing cells

    Relative entropy under mappings by stochastic matrices

    Get PDF
    AbstractThe relative g-entropy of two finite, discrete probability distributions x = (x1,…,xn) and y = (y1,…,yn) is defined as Hg(x,y) = Σkxkg (yk/kk - 1), where g:(-1,∞)→R is convex and g(0) = 0. When g(t) = -log(1 + t), then Hg(x,y) = Σkxklog(xk/yk), the usual relative entropy. Let Pn = {x ∈ Rn : σixi = 1, xi > 0 ∀i}. Our major results is that, for any m × n column-stochastic matrix A, the contraction coefficient defined as ηğ(A) = sup{Hg(Ax,Ay)/Hg(x,y) : x,y ∈ Pn, x ≠ y} satisfies ηg(A) ⩽1 - α(A), where α(A) = minj,kΣi min(aij, aik) is Dobrushin's coefficient of ergodicity. Consequently, ηg(A) < 1 if and only if A is scrambling. Upper and lower bounds on αg(A) are established. Analogous results hold for Markov chains in continuous time

    Real space application of the mean-field description of spin glass dynamics

    Full text link
    The out of equilibrium dynamics of finite dimensional spin glasses is considered from a point of view going beyond the standard `mean-field theory' versus `droplet picture' debate of the last decades. The main predictions of both theories concerning the spin glass dynamics are discussed. It is shown, in particular, that predictions originating from mean-field ideas concerning the violations of the fluctuation-dissipation theorem apply quantitatively, provided one properly takes into account the role of the spin glass coherence length which plays a central role in the droplet picture. Dynamics in a uniform magnetic field is also briefly discussed.Comment: 4 pages, 4 eps figures. v2: published versio

    On the equivalence of two deformation schemes in quantum field theory

    Get PDF
    Two recent deformation schemes for quantum field theories on the two-dimensional Minkowski space, making use of deformed field operators and Longo-Witten endomorphisms, respectively, are shown to be equivalent.Comment: 14 pages, no figure. The final version is available under Open Access. CC-B

    Wind and Solar Curtailment: International Experience and Practices

    Get PDF
    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusses how much curtailment is occurring, how it is occurring, why it is occurring, and what is being done to reduce curtailment. This summary is produced as part of the International Energy Agency Wind Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power

    Baryons at the Edge of the X-ray Brightest Galaxy Cluster

    Full text link
    Studies of the diffuse X-ray emitting gas in galaxy clusters have provided powerful constraints on cosmological parameters and insights into plasma astrophysics. However, measurements of the faint cluster outskirts have become possible only recently. Using data from the Suzaku X-ray telescope, we determined an accurate, spatially resolved census of the gas, metals, and dark matter out to the edge of the Perseus Cluster. Contrary to previous results, our measurements of the cluster baryon fraction are consistent with the expected universal value at half of the virial radius. The apparent baryon fraction exceeds the cosmic mean at larger radii, suggesting a clumpy distribution of the gas, which is important for understanding the ongoing growth of clusters from the surrounding cosmic web.Comment: Accepted for publicatio

    Ultrathin compound semiconductor on insulator layers for high performance nanoscale transistors

    Full text link
    Over the past several years, the inherent scaling limitations of electron devices have fueled the exploration of high carrier mobility semiconductors as a Si replacement to further enhance the device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been actively studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. This integration, however, presents significant challenges. Conventionally, heteroepitaxial growth of complex multilayers on Si has been explored. Besides complexity, high defect densities and junction leakage currents present limitations in the approach. Motivated by this challenge, here we utilize an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on Si/SiO2 substrates. As a parallel to silicon-on-insulator (SOI) technology14,we use the abbreviation "XOI" to represent our compound semiconductor-on-insulator platform. Through experiments and simulation, the electrical properties of InAs XOI transistors are explored, elucidating the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Importantly, a high quality InAs/dielectric interface is obtained by the use of a novel thermally grown interfacial InAsOx layer (~1 nm thick). The fabricated FETs exhibit an impressive peak transconductance of ~1.6 mS/{\mu}m at VDS=0.5V with ON/OFF current ratio of greater than 10,000 and a subthreshold swing of 107-150 mV/decade for a channel length of ~0.5 {\mu}m
    corecore