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ABSTRACT 

The relative g-entropy of two finite, discrete probability distributions x = 

(Xi,. , x,) and y = (yi, , y,,) is defined as H,(x, y) = Ckxkg(yk/xk - I), 
where g : (- 1, M) -a ‘8 is convex and g(O) = 0. When g(t) = -1ogfl + t), then 

H,(x, y) = Ckxk log(xk/yk), the usual relative entropy. Let P, = {x,5 !R” : Cixi = 
1, xi > 0 Vi}. Our major result is that, for any m X n column-stochastic ‘matrix A, 
the contraction coefficient defined as ng( A) = sup(H,,( Ax, Ay)/H (x, y): x, y E 
P,,, x f y} satisfies ng( A) =$ 1 - cr( A), where a( A) = min,, k X3, min?aij, a,,) is Do- 
brushin’s coefficient of ergodicity. Consequently, ng( A) < 1 if and only if A is 

scrambling. Upper and lower bounds onng( A) are established. Analogous results hold 
for Markov chains in continuous time. 

1. INTRODUCTION 

Since Boltzmann (1877) introduced the concept of entropy in classical 
statistical mechanics, significant applications of entropy and related function- 
als have been found in many fields, including demography (e.g., White 1986, 
Goldman and Lord 1986), economics (Theil 1967, Georgescu-Roegen 1971), 
information theory (e.g., Shannon 1948, Csiszar and KGrner 1981>, physics 
(e.g., Jaynes 1957, Lieb 1975, Wehrl 1978, Thirring 1983), population biology 
(e.g., Demetrius 1985, Iwasa 1988>, probability theory (e.g., Kelly 1979, 
Seneta 1982, Ellis 1985, Liggett 1985>, and statistics (e.g., Kullback and 
Liebler 1951, Ali and Silvey 1966, Kullback 1968, Liese and Vajda 1987, Joe 
1989). Many applications concern the changes over time in the difference 
between two distributions, when this difference is measured by a convex 
functional which we shall call the relative entropy. So many names have been 
used by so many authors for what we call relative entropy that we do not even 
attempt a historical review; see Good (1983) and Wehrl (1978). 

This paper provides new information about how the relative entropy 
changes in a finite-state Markov chain in discrete time and in a finite-state 
Markov process in continuous time. This information can be used to bound 
the rates of convergence to equilibrium of ergodic Markov chains and Markov 
processes; but we shall not develop such applications here. Section 2 gives 
definitions and background. Sections 3-5 describe the relative entropy of 
two finite positive probability vectors each multiplied by a single finite sto- 
chastic matrix. Our major new result (Section 3) is that H,(Ar, Ay) 

< [l - a(A)I y), h w ere H, is the relative-entropy functional defined 
in terms of the convex function g, (Y is Dobrushin’s coefficient of ergodicity 
a( A) = minj,k Ci min(aij, a,,), and A is an m X n column-stochastic ma- 
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trix. Section 4 shows that the contraction coefficient defined as 77,(A) = 

sup{H,(Ar, Ay)/H,(x, y): x, y E P,} satisfies rip(A)) < 1 if and only if A is 
scrambling. Section 5 gives and compares upper and lower bounds for Q(A). 
Section 6 describes the relative entropy of two probability vectors multiplied 
by successive powers of a single stochastic matrix: under suitable conditions 
on the eigenstructure of A and the smoothness of g, the asymptotic rate of 
contraction of the relative g-entropy under repeated multiplication by A is 
the square of the second largest eigenvalue of A. Section 7 gives analogous 
results for an exponentiated infinitesimal generator of a finite-state Markov 
process in continuous time. 

2. DEFINITIONS AND BACKGROUND 

Let m, n, and d be finite positive integers. All matrices will be m X n or 
d X d. All vectors will be n X 1 or d X 1 column vectors. Vectors followed 
by ’ will be transposed, i.e., 1 x n or 1 X d row vectors. As usual, the 
ZP-norms are defined for a d-vector x and for 1 < p < ~0 by IIxllP = 

(Clx lPY’P. 
A matrix or vector in which all elements are nonnegative real numbers 

will be called nonnegative. A matrix or vector in which all elements are 
positive real numbers will be called positive. Let Nd be the set of nonnega- 
tive probability d-vectors, i.e., Nd = (X E Rn : xi > 0, I&xi = 1). Let Pd be 
the set of positive probability d-vectors, i.e., Pd = {x E Nd : xi > 0 for all i). 
If r E Pd with elements xi, let 1 - x denote the d-vector with elements 
1 - xi. Also, let ei E Nd denote the ith unit vector with 1 in the ith position 
and all other elements 0. 

A stochastic m X n matrix is a matrix each column of which belongs to 
N,,, (i.e., a nonnegative matrix with all column sums 1); such a matrix is 
sometimes called column-stochastic to distinguish it from a row-stochastic 
matrix, a nonnegative matrix with all row sums 1. A nonnegative matrix is 
called row-allowable if each row contains at least one positive element. A 
column-stochastic matrix need not be row-allowable. A matrix with at least 
one positive row (i.e., all elements of a row positive) is called row-positive. A 
column-stochastic row-positive matrix is sometimes called a Markov matrix 
(e.g., Iosifescu 1980, p. 57). Clearly, a positive stochastic matrix is row-allowa- 
ble and row-positive. A nonnegative d X d matrix A is called primitive if Ak 
is positive for some positive integer k. 

A column-stochastic m X n matrix is called a scrambling matrix (Hajnal 
1958, p. 235) if any submatrix consisting of two columns has a row both 
elements of which are positive; i.e., A = (aij) is scrambling if, for all j and k 
such that 1 -<j < k < n, there exists an i such that 1 < i < m and aiiaik > 0. 
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Every row-positive matrix is scrambling, but not conversely. A d X d scram- 
bling matrix need not be primitive, and a primitive matrix need not be 
scrambling (Remark 4.3). 

As usual, a real-valued function h on some convex subset D of a vector 
space over the reals is called convex if, for all p E [0, I] and all s, t E D, 
h(ps + [l - p]t) < p/t(s) + (1 - p)h(t). A convex function h is called 
strictly convex if the preceding inequality is strict whenever s f t and 

p(l - p) f 0. 
A real-valued function h on some convex cone D of a vector space over 

the reals is called homogeneous if, for all r E D and all nonnegative A, 
h(k) = Ah(x). 

Logarithms are to the base e. The function h(t) = t log t is defined on 
(0, m> and, by defining h(O) = 0, extends continuously to [0, m>. This h(t) = 

t log t is strictly convex on [O, w>. 

DEFINITION 2.1. For any two positive d-vectors x = (xi) and Y = (y,), 
whether or not x and y are probability vectors, define the relative entropy 
H(x, Y> by H(x, y) = C,x, log(x,/y,) and the symmetric relative entropy or 
entropy production by 

~(x,Y)=H(x,y)+H(y~X)=~(x*-yi)log~’ 
1 1 

Some authors define the relative entropy with the opposite sign (e.g., 
Ahlswede and G&s 1976, Donald 1986) or with its arguments in the reverse 
order, so care is required in relating the results of different papers. 

DEFINITION 2.2. Let C#J be a continuous real-valued function on (0, m> X 
(0, w> that is homogeneous and jointly convex in its arguments and satisfies 
+(l, 1) = 0. For any two positive d-vectors x = (xi) and y = ( y,), whether 
or not x and y are probability vectors, define the relative +-entropy 

H+(x, Y) by H,(X, Y) = Ci4(Xi, Yi> an a s mmetric relative +entropy by d y 

I&> Y> = K&J Y) + &(Y, x>. 

Since &a, b) = $(a, b) + &(b, a) satisfies the hypotheses of Definition 
2.2 if 4 does, and since 1+(x, y ) = H$( x, y 1, there is no further need to 
speak separately of J+. 

It follows from homogeneity and convexity at i that 4 is subadditive, i.e., 

4(x, +x52> Yl + Y2) G 4(X,> Y,> + 4(X2> Yz> 

forall x1, x2, yl, yn E (O,a). 
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It will occasionally be useful to define $(O, 0) = 0 and correspondingly to 
extend the definition of W,(x, y) to suitable pairs of nonnegative vectors. 

Henceforth H+ will denote any relative $-entropy where 4 is assumed to 
satisfy the hypotheses of Definition 2.2. This generalization of relative en- 
tropy has been widely studied under various names and notations (e.g., 
Csiszir 1963, 1967, Ali and Silvey 1966, Abrahams 1982, Petz 1986a, b). We 
distinguish the logarithmic special case (Definition 2.1) because this case is 
usually considered in most applications. 

It is easily proved that a continuous real-valued homogeneous function 4 
on (0, a) X (0, m) is jointly convex in both arguments if and only if g(t) = 
4(1, 1 + t) is convex for t E ( - 1, m). It follows that any continuous real-val- 
ued convex function g(t) on (- 1, m) such that g(0) = 0 defines a relative 4- 
entropy via the assumptions that 4(1,1 + t) = g:(t) and 4 is homogeneous. 
Hence the relative $-entropy and related quantities can be indexed by 4 or 
by g, i.e., Hb(r, y> = C,4(xj, yt) if and only if H,(x, y> = C,x,g(y,/x, - 
1). However, in all cases H,,, denotes the relative entropy in Definition 2.1; 
Hlog is the special case of H, when g(t) = -log(l + t). 

The following properties of relative entropy are readily established, so we 
omit proofs. First, H+ is a continuous, real-valued function that is homo- 
geneous, jointly convex in (x, y) for any positive d-vectors x and y, subad- 
ditive, and such that Hb(x, x) = 0. Second, for any X, y E PC,, H,(x, y) > 0; 
and if 4(1, t) is strictly convex for t E (0, m), then H,(x, y) = 0 if and only 
if x = y. Third, for any positive d-vectors X, y and any d X d permutation 
matrix Q, H+(x, y> = H+(Qx, Qy). For any positive n-vectors x, y, any 
permutation matrices Q,, Q2 of size m X m and n X n, respectively, and any 
row-allowable m X n matrix A, there exist positive n-vectors x ‘, y ’ such that 

H+(Q$Q,x, Q,AQpy)/H&, y> = H,hx’, Ay’)/H,(x’, y’>. 
It has been proved many times and in more general settings that if A is a 

column-stochastic, row-allowable m X n matrix and x and y are positive 
n-vectors (X and y need not be normalized to be probability n-vectors), then 

H,(Ay, Ay) < H4(x, y) (e.g., M oran 1961, Csiszar 1963 [p. 90, his Theorem 
11, Morimoto 1963). Further, the inequality is strict if 4(1, * ) is strictly 
convex and A is scrambling and x # y (e.g., Ahlswede and G&s 1976). 

DEFINITION 2.3. For any m X n matrix A, Dobrushin’s (1956) coeffi- 
cient of ergodicity is 

a( A) = min E min(ajj, utk). 
.i,k i=l 

A column-stochastic, row-allowable matrix A is scrambling if and only if 
LY( A) > 0 (see Iosifescu 1980, pp. 56-57). The complement 1 - (Y(A) will 
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u(A)-I-a(A)=~~~,~I”ij-‘ikI (2.3.1) 
3, t-1 

and satisfies (Dobrushin 1956, pp. 69-70) 

E(A) = sup 
11 4 x - Y> 111 : 

llx - Ylll 
x and y are positive n-vectors, 

x z y, kill = iIylll . (2.3.2) 
I 

3. RELATIVE ENTROPY UNDER THE ACTION OF A 
STOCHASTIC MATRIX 

THEOREM 3.1. Let A be a column-stochastic, row-allowable m X n 

matrix, and let x, y E P,,. Then 

Kd A, AY) =G ~(A)&,(x, y). 

The proof of this theorem is the goal of the remainder of this section. 

LEMMA 3.2. Let A be a column-stochastic m X n matrix. For any real 

n-sector s = (sj>, 

~\(As),/G(A)&+rr(A) 
i=l j=l 

Proof. Define LY = a( A), Cy = 1 - CY, and 

J+= {j: sj a 01, J_= {j: sj < O}, u+= CIsjl' 
I+ 

If s E N,, or -s E N,,, the result is true. Hence assume min(u_, u +) > 0. 
Then, since C,-(skI/u _ = C,+s,/u+ = 1 by definition, 
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js]+ ks]_ U+ u- i 

Now define u = min(u +, ZL _}. Then, by definition, IC 
readily seen that 2~ = u++ u_- Ju+- u _I. Without 1 

.sl] = (U + - u _I. It is 
oss of generality, as- 

sume that u + 6 u _; if, on the contrary, u + > u ~, then exchange u _ and u + 
and exchange j and k. Continuing the previous equation, we have, since 

Ciat/L = 1 for any h, e.g., h = j or k, 

= Z~ls,l + a cs, 
I Ii I n 

LEMMA 3.3. Let G and v be Jmeu.sures on the measure space (%, B(S)) 

with bounded variation and compact support such that 

(i) Jgdp = jgdv ifg(x> = ax + b, and 

(ii> /g dp < /g dv if g(x) = Ix - cl fir all c E u = supp( pu> U 
supp(4. 

Then /g dp < /g d v for any convex, continuous function g : CT + 8. 

Proof. (i) and (ii) imply /gdp < /gdv if g(x) = (x - c>+= $(x - c> 
+ Jx - cl]. Any convex continuous g : u + 33 can be approximated uni- 
formly (Rockafellar 1970, p. 91) by a sequence {gN} of functions, N + 00, 
defined by 
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where (Z-C,,, . . , xN 1 is a partition of u and 

m, = g(%+1> -g(%) 
1 

‘t+l - 'i 

Thus the terms of g, satisfy the desired inequality; hence 

/Eh dP G /g, dv, 

and letting N -+ ~0 gives, in view of the uniform convergence of g,, 

LEMMA 3.4. Let x, y E P,,, and let g : [- 1, m) -+ % be convex and 
continuous. Then for any column-stochastic, row-allowable m X n matrix A, 
with (Y = Q(A), E = Z(A), 

CCAx)ig 
(Ay)i - (h)i 

1 

(Ax)i 

Proof. Let 6 denote the Dirac needle function, and define 

+ cd(O). 

Then for any function g, 

/ 
gdp = C( Ax)ig 

z 

+ ag(O). 
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We now verify that hypotheses (i) and (ii) of Lemma 3.3 are satisfied. As 
for (i), if g(x) = ax + h, then g(0) = b and 

!gdP = C {u[(AY)i - (Ax)!] + b( h)i} = b, 

/gdv=Ex[+-rk) +br,] +ab 
k 

= Eb t ab = b. 

This proves that Al. and u satisfy (i) of Lemma 3.3. 
As for (ii), if g = 1 x - cl, where c 2 - 1, then 

/gdP = 7 I(&/>, - (A(” f l>x)iI 

= duly, - (c + l)xk( + (Y(c(. 

Now apply Lemma 3.2 with Sk = Yk - (c + 1)x,. Then, since zksk = -_C if 
XI y E p,> 

This proves that /_L and v satisfy (ii) of Lemma 3.3. Hence 

[g& Q /gdu. n 

Proof of Theorem 3.1. 

where g :[-1, > 00 + % defined by g(t) = +(l, 1 + t) is convex and g(0) = 
~$41, 1) = 0. Th e d esired conclusion follows immediately from Lemma 3.4. n 
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4. THE RELATIVE-ENTROPY CONTRACTION COEFFICIENT 

Assume in this section that 4(1, . ) is strictly convex on (0, w>. Hence, for 
any x E P,,, y E P,, whenever x # y, H+(x, y> > 0. Also assume through- 
out this section that A is a column-stochastic, row-allowable m X n matrix. 
For such a matrix A, define the relative +-entropy contraction coefficient 

q(A) = SUP 
i 

H$+( A-x, AY) : x E p 

H,(r, Yl n’ 

The requirement x, y E P, can be replaced by the requirements that x, y 
are positive and llxlli = 11 ylli. 

The special case when +(a, b) = a log(a/b) was extensively investigated 
by Ahlswede and G&s (1976). 

The following properties of the relative &entropy contraction coefficient 
are elementary to prove, so we omit the details: 

(i) If A and B are column-stochastic, row-allowable matrices of size 
m X n and n X q, respectively, then n+( AR) < r/+(A)v+(B). 

(ii) For any permutation matrix P, q+(P) = 1. 
(iii) Q,(A) is invariant under arbitrary independent permutations of the 

rows and columns of A. (However, see Remark 4.3.) 
(iv) v+(A) is convex in A, i.e., if A and B are column-stochastic, 

row-allowable m X n matrices and 0 < p < 1, then Q( pA + (1 - p) B) < 

p&4) + (I - p)$R). 
(v) If A is a positive column-stochastic matrix, then n+(A) = 0 if and 

only if A has rank 1. 

The major result of this section, which follows, is an immediate conse- 
quence of Theorem 3.1. 

THEOREM 4.1. 0 f r/+(A) < S(A) < 1. 

THEOREM 4.2. q(A) < 1 $und only if A is scrambling if and only if 

E(A) < 1. 

Proof. If A is scrambling, then E(A) < 1, so Q,(A) < 1 by Theorem 
4.1. 

If A is not scrambling, then there exist indices j and k such that for all 
indices i, aiiaik = 0. Thus if J = {i : aij > O} and K = {i : aik > O}, then 
JnK=0andCi,Iajj=1=Ci,,aik.Chooses,tsuchthatO<s,t<1, 
and define x E N,,, y E N,, by xj = s, xk = 1 - s, yj = t, yk = 1 - t; let 
all other elements of x and y be 0. Then x: # y if and only if s # t, and 
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llxll~ = II ylL = 1. Then 

K&, y) = 44 s, 1) + 4(1 - s, 1 - t) # 0 if sft. 

Now (AX>, = aijs and CAY), = aijt for i E J; (Ax), = aik(l - s) and (Ay), 
= a,k(l - t) for i E K; and (Ax), = 0, (AY)~ = 0 otherwise. Thus 

H,+( Ax, Ay) = C +(uijs> uij’) + C +(uik(l - S>T ‘ik(l - ‘>> 
iE] iEK 

= ~uij~(s,t) + -&&#q -s,l -t> 
iE] iEK 

= c#l(s,t) + c#ql -s,l -t) =H&,y). 

By replacing 0 with E > 0 and taking the limit as E + 0, one can find a set of 
strictly positive vectors {x,, yJ such that 

ft#i he, AY,) 

i%l H&(X,, y,) = 

1 

; 

hence Q( A) = 1. n 

REMARK 4.3. It is not true that if a column-stochastic, row-allowable 
d X d matrix A is primitive, then v+(A) < 1, because many primitive 
matrices are not scrambling. 

EXAMPLE. Let 

Y= 

where h is any positive real number and s, s’ E (0, 1). Since A3 is positive, 
A is primitive. Elementary calculation shows that H+,( AX, Ay) = H+(x, y>, 
regardless of h; hence v+(A) = 1. This example generalizes an example 
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kindly given us by Gerald S. Goodman (personal communication, 8 June 
1989). 

Since q+( A2> < 1, we have p( A’) < [q+,(A)]’ in this case. This example 
also shows that, in general, q+( A ) is not invariant under permutations of the 
rows of A alone. For by exchanging the first and second rows of A in the 
example, one obtains a block-diagonal, nonscrambling matrix (call it B) for 
which q+(B) = 1 and q+(B2) = 1. 

PROBLEM 4.4. Let 4 satisfy the assumptions of Definition 2.2, and 
assume that +(l,. ) is strictly convex on (0, m). Suppose 4’ is another 
function with the same properties. Does q+(A) = q+,(A) for all column- 
stochastic, row-allowable A imply I$ = c+’ for some c > O? 

5. BOUNDS RELATING DIFFERENT COEFFICIENTS OF 
CONTRACTION AND ERGODICITY 

Assume throughout this section that A is a column-stochastic, row-allow- 
able m X n matrix. 

DEFINITION 5.1. Doeblin’s coefficient of ergodicity 6 is 

m 
6(A) = c min{ail : j = l,...,n}. 

i=l 

It is known that 6(A) < a(A) with equality if n = 2. 
Define 6(A) = 1 - 6(A). 

DEFINITION 5.2. If x and Y are positive d-vectors, the Hilbert projec- 
tive pseudometric d is (e.g., Seneta 1981, pp. 80-81) 

d(x, Y> = 1% 
maxiCxi/Yi) ‘i Yj 

minj( Xi/Y3) 
= max log - 

i. j *jYi ’ 

DEFINITION 5.3. Sir&offs contraction coefficient is 

T~( A) = sup 
4 A, AY) 

4x, Y) 
: x 65 P,r > y 62 p,, > x += y > 

I 

where d(x, y) is the Hilbert projective pseudometric just defined. 
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It is easy to prove that for all positive probability d-vectors X, y, one has 

0 < J(x, y) =G d(r, y), and 0 = J(x, y) if and only if J<x, y) = d(x, y) if 
and only if x = y. It is already known, moreover, that for any column-sto- 
chastic d x d matrix A, one has cU( A) < T~( A) (Bauer, Deutsch, and Stoer 
1969; see e.g. Seneta 1981, p. 110). 

For g(t) = 4(1, 1 + t), the relative entropy, and the corresponding 
contraction coefficients, can be indexed by C#J or by g. It will now be 
convenient to write H 

of n_,osCl+t&A). It f lf 

rather than H4. We will simply write q0 
f” 

(A) instead 
o ows f rom Theorem 4.1 that for all A and or all strictly 

convex functions g, one has 77,(A) < +,(A) = E(A), rl,( A) < $1 A), and 
77,(A) < TV. Because there exist matrices A such that iii(A) < 6(A) and 
a(A) < T~( A) (e.g., Example 5.7 and Example 5.81, there is no strictly 
convex function g for which either 6(A) = 71,(A) or TV = 77,(A), i.e., 
neither Doeblin’s nor Birkhoffs coefficient of ergodicity can be realized as 
the contraction coefficient of some relative &entropy. 

We now study 77,(A) for g(w) = w2 and g(w) = -log(l + w). Since g 
is always assumed to be convex, the point of Theorem 5.4 is the strict 
positivity of g”(O). 

THEOREM 5.4. Zf g(w) is thrice dijfierentiable in a neighborhood of 0 

and g”(0) > 0, then 71,2(A) < TV; in particular, 77,2(A) Q q,&A). 

Proof. Whenever g is homogeneous of even degree, it can be extended 
to all of M. In particular, because g(w) = w2 is homogeneous of degree 

two, 

qu2( A) = sup Hw2(Ax’ Ay) 
X#Y HA ~3 Y> 

x, YSP” 

H&Ax, Ax + Au) @(Ax, Au) 
= sup = sup (5.4.1) 

XEP, &,I( x, x + u) rep, @(X,U) ’ 

Jl=O “=I=0 

where @(x, u) = HWz(x, x + II> = Xiy2/x and u # 0 is arbitrary except 
that uT1 = 0; henceforth, when we write u’l = 0, we always assume u # 0. 

By the hypotheses, we can expand g in a Taylor’s series about w = 0, 
and since g(O) = 0, 

c#(s,t) =sg f - 1 =(t-s)g’(O) + 
i i 

(t ; s)2 $2 + GO@ -q. 
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Now let x E P,,, and let v # 0 satisfy v'l = 0. For sufficiently small E, 
y,=x+~u~P,.Th en Hr( x, yE) is well defined and 

H,k Ye> = 
g” (0) 
y-E2@(X,U) + O(&.). (5.4.2) 

Since A is linear, 
Therefore 

H&Ax, Ay,) = [$‘(O)/‘~]E~%~X, Au) + O(E’>. 

It follows from (5.4.1) that, by choosing x, u, .Y appropriately, the right side 
of (5.4.3) can be made arbitrarily close to q,J A). n 

THEOREM 5.5 

Proof. Let k, I be the indices of the columns of A for which the 
maximum above is attained. Choose x, v so that xk = x1 = $ and xj = ,s for 

j#k,j#l; v - +l,v,= -l,vI=Oforj#k,j#l.Thenitcanreadily 
be venfied thai - 

If A is not scrambling, then there exist indices j and k such that for all 
indices i, (aij - uikj = ujj + uik = max{ujj, uik}, so that b(A) = 1. There- 
fore 

l( A) = qw2( A) = q,,,( A) = E( A) = 1. 

THEOREM 5.6. Let A be a d x d primitive column-stochastic matrix. Let 

h,(A) be an eigenvulue of A second largest in modulus. Then qw2( A) > 

[Q(A)? = [Y(A)12 3 &(A)?. 

Proof. Schwarz’s inequality implies that, for all x E P,, @(x, u) >, 
EkIvkl12 = Ilullf, so that 
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Now choose xk = (ukI/llujll; then x E Pd and @(x, u) = Ilvllf. Thus 

The final inequality of the theorem is already known (e.g., Seneta 1979). n 

EXAMPLE 5.7. 
l), i.e., 

Let A be the matrix with elements aij = (1 - aij)/(d - 

i 

1 

aij= d-1 
if i #j, 

0 if i =j. 

The following remarks are readily verified: 

(i) [(A) = 77,2(A) = r],,,(A) = Z(A) = l/(d - 1). 

(ii) 6(A) = 0 and ~s( A) = 1. Th ere ore, if d > 2 then Z(A) < s(A) = f 
rs( A). 

(iii) AX = (1 - x)/(d - 1) for all x E Pd. Combining this with (i), The- 
orem 3.1, and the homogeneity of H, yields 

H+( Ax, Ay) = -&H&l - r>> (1 - Y>> G 

Equivalently, if x, y E PC,, then H+((l - x), (1 - y)) < H,+(x, y). Similarly, 
@(l - x, u) < @(X, VI. 

(iv) Since both T,~~(*) and S(.) are continuous functions of the elements 
of the matrix argument, A can be perturbed slightly to a matrix A’ with all 
elements positive while retaining Q,& A’) < 1 - 6( A’). 

EXAMPLE 5.8. Combining Theorem 5.4 and Theorem 5.5 with Theorem 
4.1 and the remark following Definition 5.3 gives 

Various combinations of equality and strict inequality can hold; to demon- 
strate this we summarize in Table 1 the simple example 
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The expressions for arbitrary 9 and the proof that rl,z( A) = 710g( A) for 
all 2 x 2 matrices require elementary, but tedious, computations. We omit 
the computations, which can be verified by using a symbolic manipulation 
computer program. We distinguish four situations: 

(a) ,$( A) = 71u;2( A) = v,$A) = Z(A) = rB(A). This occurs if p = 4 
=lorp=q=O[ in which cases A is a permutation matrix and 77,(A) = 11 

or p = 1 - q [in which case A is a projection matrix of rank 1 and 

77,(A) = 01. 
(bl [(A) < rl,z(A) = T,,~(A) = Z(A) = TV. This occurs if q Z p, 1 

- p and q = 1,O. 
(c) [(A) = 71,2t(A) = q,,p(A) < Z(A) = T~( A). This occurs if q = p 

but q # 0, ;, 1. 
(d) l(A) < rl,~( A) = v,,,&A) < iSA) < TJA). This occurs if q f 

0, p, 1 - p, 1. 

These examples illustrate that any combination of equality and strict 
inequality can occur in l(A) < rl,~( A) < Z(A). That either equality or 
strict inequality can hold in cY( A) < TV (A) and Z(A) < s(A) is well known 
and is illustrated by Example 5.8(d) and Example 5.7(ii), although the latter 
requires d > 2. It is an open question whether rl,e(A) < vIog(A) is possible 
in higher dimensions. 

6. ASYMPTOTIC BEHAVIOR OF RELATIVE ENTROPY 

As usual, a d X d matrix A is said to be simple if it is similar to a 
diagonal matrix, i.e., if there exist d X d matrices C and A, where A is 
diagonal, A = diag(A,), such that A = CAC-I. If c, denotes the ith column 
of C, then Aci = A,ci, so the column ci is a right eigenvector of A 

corresponding to the eigenvalue hi. If V = C-i, and the ith row of V is 
written UT, then $A = AiuT. Thus UT is a left eigenvector of A correspoding 
to hi. The usual spectral decomposition or s ectral resolution of a simple 
matrix A is A = Cihiciu~. It follows that A re- - CihkciuT for any positive 
integer k. Assume the eigenvalues of a simple matrix A are labeled so that 

IAil > lh,l > .** 

THEOREM 6.1. Let A be a primitive, simple column-stochastic d x d 

matrix with spectral decomposition A = CiAiciuT. Fix probability vectors 

x E Nd, y E Nd, x f y. Let i, be the least positive integer i for which 

UT< x - y) # 0. Assume A is such that Ai0 is real and ( Aiol > 1 Ai,+ II. Assume 
that g(w) = 4(1,1 + w) is thrice differentiable in a neighborhood of 0 and 
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that g ” (0) > 0. Then 

In words, the asymptotic rate of contraction of the relative +-entropy is the 

square of the largest real eigenvalue for which the left eigenvector is not 

orthogonal to x - y, when such an eigenvalue exists and exceeds in modulus 

the remaining eigenvalues. 

Before giving the proof, we observe that, since u:’ is a positive constant 
vector and the sums of both x and y are 1, we have i, 2 2. 

Proof. Let x(t) = A’ x, y(t) = At y. By the Perron-Frobenius theorem 
for primitive matrices (e.g., Seneta 1981) applied to a column-stochastic 
matrix, A, = I, c1 is a positive vector, which we name 7~ = (7~~1, and u1 is a 
positive constant vector, which we may take to be lT. Thus 

d d 

x(t) = 37 + c h:cp~x = 77 + c /i:cjaj (q = $x), 
i=2 i=2 

d d 

y(t) = ?T + c A:c,u;y = 7-r + c li:cj p, (pi = u,!‘y). 
i=2 i=2 

If ci(j) is the jth element of ci, then 

d d 

ej(t) E y,(t) - xj(t) = C A:( pi - ai)Ci(j) = 2 A:( Pi - fit>Ci(j). 

i=2 i=i,, 

In the summation on the right, all terms (if any> with 2 < i < i, vanish, 
because for them cq - pi = uF(x - y> = 0. The Perron-Frobenius theorem 
guarantees that 1 > IA,]. So for large t, ej(t) * 0 and therefore I cj(t)/xj(t)l 
< 1 and ei(t)/xi(t) f - 1. Using a Taylor-series argument similar to that at 
(5.4.2), it ~ollows’that for large t,- _ 



ENTROPY AND STOCHASTIC MATRICES 229 

Now Cj.sj(t) = 0, so, neglecting all but the first nonzero term, 

g”(O) c [cj(t>]" 

4#i x(t)> YW =-j- 
g”:‘) c [cf=i,,Alt Pi - CYi)ci(j>]" 

N- 

j 
'jtt> .i 

275; 

where a(t) N b(t) means lim,,, a(t)/b(t) = 1. Thus 

lim %(x(t + 11, Y(t + 1)) 
t-33 *+t x(t)> YW 

The assumption that g is smooth cannot be eliminated from Theorem 
6.1; e.g., for the nonsmooth function +(s, t) = 1s - t 1, an analogous argu- 
ment shows that the asymptotic rate of contraction is /hi,1 rather than (Ai0j2. 

A column-stochastic matrix A is defined to be reversible if there exist d 
positive numbers 7rti, i = 1,2,. . , d, 
1,2, . . , d. 

such that aijrrj = nj,ri for all i, j = 

COROLLARY 6.2. Let A be a primitive, reversible column-stochastic d X d 
matrix. Then A is simple and all the eigenvalues A, = 1, A,, . of A are 
necessarily real. Assume the second and third eigenvalues have different 
fnoduli, i.e., /A,( > Ihal. Let x E Nd, y E Nd be such that x # y and u,‘<x - 
y> # 0, where $A = A,vl. Assume that g(w) = 4(1,1 + w> is thrice 
differentiable in a neighborhood of 0 and that g” (0) > 0. Then 

lim 
WA t+l~, A”+ly) 

= A;. 
t+m *+( At%, Aty) 

Proof. Because A is primitive, there is a unique v E Pd such that 
Au = v, by the Perron-Frobenius theorem. But if aijrrj = uj,ri for all i,j, 
then C.ajj7rj = Cjaji7rj = 7ri, i.e., 

4 
AIT = m. Therefore r = v. Because A is 

reverse le, A is similar to a symmetric matrix (e.g., Cohen et al. 1982, proof 
of Lemma 1) and therefore has all real eigenvalues. The remaining assump- 
tions of the corollary now meet the conditions of the previous theorem with 
i, = 2. n 
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Significant classes of column-stochastic matrices do not satisfy the as- 
sumptions of Theorem 6.1. For example, if A has rank one, say A = ulT, 

where u E Pd, then for any x E Nd, y E Nd, we have Ax = u = Ay. There- 
fore H+(Ax, Ay) = 0, and the ratio H+( At+ix, At+’ y)/H4( Atx, At y) is 
undefined for t > 0. As another example, suppose A is a 3 X 3 column- 
stochastic matrix with two conjugate complex eigenvalues in addition to the 
Perron-Frobenius root 1. Analysis along the lines of the previous proof 
suggests, and numerical computation verifies, that the ratio 

H+( A t+rr, At+’ y)/H+(A’x, A’y) can be a nonmonotonic function of t. 

7. CONTINUOUS-TIME MARKOV CHAINS AND 
RELATIVE ENTROPY 

Results analogous to those for discrete-time Markov chains hold also for 
continuous-time Markov chains. For background, see Alberti and Uhlmann 
(1982, pp. 35-36). 

Now assume all matrices are G! X d and real. A matrix in which all 
off-diagonal elements are nonnegative and the sum of every column is zero is 
called an intensity matrix; such matrices have zero or negative elements on 
the main diagonal. If B is an intensity matrix, it is well known that for all 
nonnegative real t, eBt is column-stochastic. An intensity matrix B is the 
infinitesimal generator of a continuous-time Markov chain with transition 
probabilities from j to i given by the (i,j) element of eBt. For x(O) E PC!, 
y(O) E Pcl, and t 2 0, define x(t) = eBtx(0) and y(t) = eB”y(O>. 

THEOREM 7.1. lf B is an intensity matrix, 0 > max i lbii 1, and 

then 

; 1% %W)~ y(t)) < w(q - 1) 

Proof. Because (B + WI), > 0 for a!1 i,j, (B + wI)/o is column-sto- 
chastic; hence 77 is meanin & ul. Let B = B + WZ and x’(t) = eBtx,, = 
e”‘eBtr,, = ewtx(t). Then 

H,[f(% G(t)] = e”‘ff,kw~ YWL 
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NOW for very small real E, e’(‘+‘) = eBtesB = (I + sB)e”; hence 

$Hm[es’xtl, “Rtyo] = )no f( Hg[ed(r+F)*o, ei(‘+E)yo] 

-H+[ eBtx,, “RfyO]) 

= j+n, i(H+[(Z + eB)eB”x,, (I + i7B)edfyo] 

-H+[edtx,,, eaty,,]>. (7.1.2) 

Now it is well known (e.g., Rockafellar 1970, p. 235) that if j’: D + 8 is 
a convex and homogeneous (of degree one) function on any convex cone D 
of a real vector space, then L E+o[~(% + 6h) -_f<x>l/c <f(b). We apply 
this fact to-the last expression with f replaced by H+, x replaced by (x’(t), 

i(t)) = (eB’x,, eB”yo>, and b replaced by (L%(t), 6$(t)). Then 

iH+[e”r,, “Rtyo] < H+[ f%(k), I$@)] 

= e”‘H,[(B + wZ)x(t),(B + wZ)y(t)]. (7.1.3) 

Now combining (7.1.1) and (7.1.3) and multiplying by e ~ wt’ gives 

&,[x(i)~ y(t)] + wH&(tL y(t)] 

G H&B + wZ)x(t), (B + w+/(t)] 

= oH@[ ( 6’ B + Z)x(t),(w-‘B + I)&)] 

G w+(o-‘B + Z)H,[x(t), y(t)]. 

Hence 

G @(77 - l>H+[ x(t), y(t)]. n (7.1.4) 
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COROLLARY 7.2. If B is an intensity matrix, then dH,(x(t), y(t))/dt < 

0. If, in addition, o-‘B + I is scrambling, then dH,(x(t), y(t))/dt < 0. 

Proof. This is immediate from Theorem 7.1 and Theorem 4.1. n 

The first part of this corollary contains, as a special case, a result quoted 
and proved, using a different method, by Shigesada and Teramoto (1975, p. 
82) and Iwasa (1988). They p roved, in effect, that dH(x(t), y(t))/dt < 0 in 
the special case when y(t) is constant and equal to a positive right eigenvec- 
tor of B corresponding to the eigenvalue 0. _ 

Define t+(B) = sup{d log H+(x(t), y(t))/dt : t > 0, x(O) E P,,, y(O) E 

x(O) # y(ON. 

COROLLARY 7.3. For the d x d intensity matrix B, 

E,+J B) f ~(77 - 1) G -P, 

where 77 = q+(w-‘B + I> and w > maxi(bii), and where 

p= 
j, e<, 

i 
c [min(bi/, bid] 
i+j 
i+k 

Proof. It follows from (7.1.4) and Theorem 4.1 that 

Now if w is sufficiently large, then 

cu(w-‘B + I) = /3/w. n 

THEOREM 7.4. Let B be an intensity matrix such that, for some positive 

constant c, A_= 1 + cB, x E Nd, and y E Nd all satisfy the assumptions of 
Theorem 6.1. Then 

!Lrn% i log H+(eBtx, e”‘y) = 24”. 

The proof essentially repeats the proof of Theorem 6.1, and will be 
omitted. 
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Notes added in proof: S. R. S. Varadhan (4 March 1992) suggested that 
Theorems 3.1 and 7.1 provide a new and easier way to prove logarithmic 
Sobolev inequalities (e.g., Gross, L. 1976. Logarithmic Sobolev inequalities, 
Amer. J. Math. 97:1061-1083). 

M. B. Ruskai and E. Seneta (8 March 1992) proved that 77,2(A) = qO,(A) 
for all A. This answers in the negative the open questions at the en $ s of 
Sections 4 and 5. 

Gerald S. Goodman, John Hajnal, M&us Iosifescescu, and a referee made 
helpful comments on previous dra$s. Gerald S. Goodman first made us aware 
of the work of Csisza’r (1963) and produced a counterexample orz which 

Remark 4.3 is based. The work ($J.E.C. was supported in part by U.S. 
National Science Foundation grant BSR 87-05047 and the Japan Society $)r 
the Promotion of Science, and by the hospitality <>f Mr. and Mrs. William T. 

Golden, the Institute j& Advanced Study, Princeton, New Jersey, and the 
Departments of Biophysics and Zoology, Kyoto University, Kyoto, Japan. 
Most of M. B.R.‘s contributions to this work were per_-@mecl while visiting 
AT& T Bell Laboratories and the Courant Institute of Mathematical Science.s 

of Neu? York University; her work was partially supported by these instihl- 
tions and by National Science Foundation grunts DMS 88-08112 and DMS 

89-08125. 
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