167 research outputs found

    MODEL BAHAN AJAR MATEMATIKA SMA BERBASIS REALISTIC MATHEMATICS EDUCATION UNTUK MENDUKUNG PENCAPAIAN TUJUAN PENGAJARAN MATEMATIKA SMA DI PROVINSI BENGKULU

    Get PDF
    Penelitian ini bertujuan untuk memperoleh model bahan ajar matematika SMA berbasis Realistic Mathematics Education (RME) yang dapat mendukung pencapaian tujuan pengajaran matematika, yaitu pemahaman konsep, kemampuan pemecahan masalah, penalaran, komunikasi, dan sikap terhadap matematika. Metode yang digunakan adalah metode penelitian dan pengembangan. Hasil yang diperoleh adalah diperoleh model bahan ajar matematika SMA berbasis RME untuk mendukung pencapaian tujuan pengajaran matematika. Ketersetujuan responden terhadap model bahan ajar tersebut sebagai berikut: 1. Aspek materi sebesar 100% (Kelas X), 100% (Kelas XI), dan 95% (Kelas XII), 2. Aspek penyajian sebesar 95% (Kelas X), 95% (Kelas XI), dan 95% (Kelas XII), dan 3. Aspek bahasa dan keterbacaan sebesar 95% (Kelas X), 98% (Kelas XI), dan 100% (Kelas XII). Disarankan, agar guru matematika SMA di Provinsi Bengkulu menggunakan model bahan ajar matematika berbasis RME untuk mencapai tujuan pengajaran matematika

    Correlated Photon Mapping for Interactive Global Illumination of Time-Varying Volumetric Data

    Full text link

    Explicit Cache Management for Volume Ray-Casting on Parallel Architectures

    Get PDF
    A major challenge when designing general purpose graphics hardware is to allow efficient access to texture data. Although different rendering paradigms vary with respect to their data access patterns, there is no flexibility when it comes to data caching provided by the graphics architecture. In this paper we focus on volume ray-casting, and show the benefits of algorithm-aware data caching. Our Marching Caches method exploits inter-ray coherence and thus utilizes the memory layout of the highly parallel processors by allowing them to share data through a cache which marches along with the ray front. By exploiting Marching Caches we can apply higher-order reconstruction and enhancement filters to generate more accurate and enriched renderings with an improved rendering performance. We have tested our Marching Caches with seven different filters, e. g., Catmul-Rom, B- spline, ambient occlusion projection, and could show that a speed up of four times can be achieved compared to using the caching implicitly provided by the graphics hardware, and that the memory bandwidth to global memory can be reduced by orders of magnitude. Throughout the paper, we will introduce the Marching Cache concept, provide implementation details and discuss the performance and memory bandwidth impact when using different filters

    Inviwo -- A Visualization System with Usage Abstraction Levels

    Full text link
    The complexity of today's visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities

    KARAKTERISASI PENAMPILAN BIBIT KAKAO BERPRODUKSI TINGGI

    Get PDF
    Understanding and explaining perception of touch is a non-trivial task. Even seemingly trivial differences in exploration may potentially have a significant impact on perception and levels of discrimination. In this study, we explore different aspects of contact related to stiffness perception and their effects on the just noticeable difference (JND) of stiffness are surveyed. An experiment has been performed on non-deformable, compliant objects in a virtual environment with three different types of contact: Discontinuous pressure, continuous pressure and continuous lateral motion. The result shows a significantly better discrimination performance in the case of continuous pressure (a special case of nonlinearity), which can be explained by the concept of haptic memory. Moreover, it is found that the perception is worse for the changes that occur along the lateral axis than the normal axis

    PROMOTING EFFECT OF ETHANOLIC EXTRACT OF ROOT TUBER OF Gloriosa superba L. ON MELON GROWTH AND FRUIT QUALITY

    Get PDF
    We present the first step towards a brain computer interface (BCI) for communication using real-time functional magnetic resonance imaging (fMRI). The subject in the MR scanner sees a virtual keyboard and steers a cursor to select different letters that can be combined to create words. The cursor is moved to the left by activating the left hand, to the right by activating the right hand, down by activating the left toes and up by activating the right toes. To select a letter, the subject simply rests for a number of seconds. We can thus communicate with the subject in the scanner by for example showing questions that the subject can answer. Similar BCI for communication have been made with electroencephalography (EEG). The subject then focuses on a letter while different rows and columns of the virtual keyboard are flashing and the system tries to detect if the correct letter is flashing or not. In our setup we instead classify the brain activity. Our system is neither limited to a communication interface, but can be used for any interface where five degrees of freedom is necessary.©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Anders Eklund, Mats Andersson, Henrik Ohlsson, Anders Ynnerman and Hans Knutsson, A Brain Computer Interface for Communication Using Real-Time fMRI, 2010, Proceedings from the 20th International Conference on Pattern Recognition (ICPR), 3665-3669. http://dx.doi.org/10.1109/ICPR.2010.894</p

    VOICE: Visual Oracle for Interaction, Conversation, and Explanation

    Full text link
    We present VOICE, a novel approach for connecting large language models' (LLM) conversational capabilities with interactive exploratory visualization. VOICE introduces several innovative technical contributions that drive our conversational visualization framework. Our foundation is a pack-of-bots that can perform specific tasks, such as assigning tasks, extracting instructions, and generating coherent content. We employ fine-tuning and prompt engineering techniques to tailor bots' performance to their specific roles and accurately respond to user queries, and a new prompt-based iterative scene-tree generation establishes a coupling with a structural model. Our text-to-visualization method generates a flythrough sequence matching the content explanation. Finally, 3D natural language interaction provides capabilities to navigate and manipulate the 3D models in real-time. The VOICE framework can receive arbitrary voice commands from the user and responds verbally, tightly coupled with corresponding visual representation with low latency and high accuracy. We demonstrate the effectiveness and high generalizability potential of our approach by applying it to two distinct domains: analyzing three 3D molecular models with multi-scale and multi-instance attributes, and showcasing its effectiveness on a cartographic map visualization. A free copy of this paper and all supplemental materials are available at https://osf.io/g7fbr/
    corecore