168 research outputs found

    The spore formation and toxin production in biofilms of Bacillus cereus : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Palmerston North, New Zealand

    Get PDF
    Listed in Dean's List of Exceptional Theses 2022Bacillus cereus (B. cereus) is a foodborne pathogen causing diarrhoea and emesis which are the consequences of enterotoxin and emetic toxin production, respectively. Sporulation and biofilm formation are used as survival strategies by B. cereus protecting cells from harsh environments. However, these survival strategies also make B. cereus more difficult to control in the food industry. The aim of this study is to investigate the spore formation and toxin production in the biofilm of B. cereus. In this study, higher sporulation and higher spore heat resistance were demonstrated in biofilms grown on stainless-steel (SS) compared to planktonic populations. The structure of coat in spores isolated from biofilms, the upregulated germination genes in planktonic cells and upregulated sigma factor B in biofilm cells are possible explanations for these observations. The levels of dipicolinic acid (DPA) did not affect the heat resistance of spores harvested from biofilms in this study. Haemolytic toxin (Hbl) was mainly secreted by cells into surrounding media while emetic toxin (cereulide) was associated with cells. Higher Hbl toxin was observed in the presence of biofilms grown on SS compared to either planktonic culture or biofilm grown on glass wool (GW) using the Bacillus cereus Enterotoxin Reverses Passive Latex Agglutination test (BCET-RPLA). This was supported by the significant (P < 0.05) increase in HblACD expression in biofilm cells on SS, using both real-time quantitative PCR (RT-qPCR) and RNA sequencing. The transcriptomic analysis also revealed that biofilms grown on SS had an upregulated secretion pathway, suggesting biofilms of B. cereus grown on SS are more pathogenic than planktonic cells. Unlike the Hbl toxin, cereulide was associated with biofilm cells/structures and attached to the biofilm-forming substrates including SS and GW used in this study. The expression of cerA and cerB was similar between biofilms and planktonic cells using RT-qPCR. This project highlights the importance of biofilms by B. cereus in food safety through the enhanced heat resistance of spores, the higher Hbl toxin production and attached cereulide toxin

    Advancing Urban Renewal: An Automated Approach to Generating Historical Arcade Facades with Stable Diffusion Models

    Full text link
    Urban renewal and transformation processes necessitate the preservation of the historical urban fabric, particularly in districts known for their architectural and historical significance. These regions, with their diverse architectural styles, have traditionally required extensive preliminary research, often leading to subjective results. However, the advent of machine learning models has opened up new avenues for generating building facade images. Despite this, creating high-quality images for historical district renovations remains challenging, due to the complexity and diversity inherent in such districts. In response to these challenges, our study introduces a new methodology for automatically generating images of historical arcade facades, utilizing Stable Diffusion models conditioned on textual descriptions. By classifying and tagging a variety of arcade styles, we have constructed several realistic arcade facade image datasets. We trained multiple low-rank adaptation (LoRA) models to control the stylistic aspects of the generated images, supplemented by ControlNet models for improved precision and authenticity. Our approach has demonstrated high levels of precision, authenticity, and diversity in the generated images, showing promising potential for real-world urban renewal projects. This new methodology offers a more efficient and accurate alternative to conventional design processes in urban renewal, bypassing issues of unconvincing image details, lack of precision, and limited stylistic variety. Future research could focus on integrating this two-dimensional image generation with three-dimensional modeling techniques, providing a more comprehensive solution for renovating architectural facades in historical districts.Comment: HABITS OF THE ANTHROPOCENE - Proceedings of the 43rd ACADIA Conference - Volume II: Proceedings book one, University of Colorado Denver, Denver, Colorado, USA, 26-28 October 2023, pp. 616-625, CUMINCAD, 202

    â„“_1-Based Construction of Polycube Maps from Complex Shapes

    Get PDF
    Polycube maps of triangle meshes have proved useful in a wide range of applications, including texture mapping and hexahedral mesh generation. However, constructing either fully automatically or with limited user control a low-distortion polycube from a detailed surface remains challenging in practice. We propose a variational method for deforming an input triangle mesh into a polycube shape through minimization of the â„“_1-norm of the mesh normals, regularized via an as-rigid-as-possible volumetric distortion energy. Unlike previous work, our approach makes no assumption on the orientation, or on the presence of features in the input model. User-guided control over the resulting polycube map is also offered to increase design flexibility. We demonstrate the robustness, efficiency, and controllability of our method on a variety of examples, and explore applications in hexahedral remeshing and quadrangulation

    Recent advances on microscopic pore characteristics of low permeability sandstone reservoirs

    Get PDF
    Understanding oil and gas production from low-permeability sandstones requires an understanding of the porosity. This paper reviews the analysis of data from hundreds of cores’ microscopic pore characteristics of low-permeability sandstone reservoirs from Chang 6 reservoir of Ji-yuan oilfield in ordos basin. And this paper is to embody the methods used in the study of low permeable sandstone reservoir in recent years and the results reflected in it. For example, by analyzing the rock of Chang 6 reservoirs, it can be seen that the rock of Chang 6 reservoirs is mostly developed by Feldspar Sandstone, its internal pore types are diverse, the pore size is mainly small pore type, the second is fine pore, and has continuous spectral distribution, and the distribution is single peak shape. Different methods have been used to study low-permeability sandstones, including scanning electron microscope, casting thin plate, physical test means, high-pressure mercury, constant velocity mercury, NMR experiments. The results show that the pore-throat combination types of reservoir are mainly small pore-micro-larynx. The main type of reservoir throat is mainly flaky throat. The extremely strong heterogeneity in the layer is the key to the efficiency and effect of water flooding. Therefore, the exploration and development of low permeable sandstone reservoirs can be guided by the analysis of relevant parameters.Cited as: Huang, S., Wu, Y., Meng, X., Liu, L., Ji, W. Recent advances on microscopic pore characteristics of low permeability sandstone reservoirs. Advances in Geo-Energy Research, 2018, 2(2): 122-134, doi: 10.26804/ager.2018.02.0

    NLRP3 Inflammasome as a Molecular Marker in Diabetic Cardiomyopathy

    Get PDF
    Diabetic cardiomyopathy (DCM), a common consequence of longstanding diabetes mellitus, is initiated by death of cardiomyocyte. Hyperglycemia-induced reactive oxygen species (ROS) overproduction is a major contributor of the chronic low-grade inflammation that characterizes as the DCM. ROS may promote the activation of nucleotide-binding oligomerization domain like receptor (NLR) pyrin domain containing 3 (NLRP3) inflammasome, a novel regulator of inflammation and cell death, by nuclear factor-kB (NF-ÎşB) and thioredoxin interacting/inhibiting protein (TXNIP). NLRP3 inflammasome regulates the death of cardiomyocyte and activation of fibroblast in DCM, which is involved in the structural and functional disorder of DCM. However, comprehensive understanding of molecular mechanisms linking NLRP3 inflammasome and disorder of cardiomyocyte and fibroblast in DCM is lacking. Here, we review the molecular mechanism(s) of NLRP3 inflammasome activation in response to hyperglycemia in DCM

    Isolation of starch and protein degrading strain Bacillus subtilis FYZ1-3 from tobacco waste and genomic analysis of its tolerance to nicotine and inhibition of fungal growth

    Get PDF
    Aerobic fermentation is an effective technique for the large-scale processing of tobacco waste. However, the specificity of the structure and composition of tobacco-derived organic matter and the toxic alkaloids in the material make it currently difficult to directly use microbial agents. In this study, a functional strain FYZ1-3 was isolated and screened from thermophilic phase samples of tobacco waste composting. This strain could withstand temperatures as high as 80°C and grow normally at 0.6% nicotine content. Furthermore, it had a strong decomposition capacity of tobacco-derived starch and protein, with amylase activity of 122.3  U/mL and protease activity and 52.3  U/mL, respectively. To further understand the mechanism of the metabolic transformation of the target, whole genome sequencing was used and the secondary metabolite gene cluster was predicted. The inhibitory effect of the strain on common tobacco fungi was verified using the plate confrontation and agar column methods. The results showed that the strain FYZ1-3 was Bacillus subtilis, with a genome size of 4.17  Mb and GC content of 43.68%; 4,338 coding genes were predicted. The genome was annotated and analyzed using multiple databases to determine its ability to efficiently degrade starch proteins at the molecular level. Moreover, 14 functional genes related to nicotine metabolism were identified, primarily located on the distinct genomic island of FYZ1-3, giving a speculation for its nicotine tolerance capability on the molecular mechanism. By mining the secondary metabolite gene cluster prediction, we found potential synthetic bacteriocin, antimicrobial peptide, and other gene clusters on its chromosome, which may have certain antibacterial properties. Further experiments confirmed that the FYZ1-3 strain was a potent growth inhibitor of Penicillium chrysogenum, Aspergillus sydowii, A. fumigatus, and Talaromyces funiculosus. The creation and industrial use of the functional strains obtained in this study provide a theoretical basis for its industrial use, where it would be of great significance to improve the utilization rate of tobacco waste

    2023 roadmap for potassium-ion batteries

    Get PDF
    The heavy reliance of lithium-ion batteries (LIBs) has caused rising concerns on the sustainability of lithium and transition metal and the ethic issue around mining practice. Developing alternative energy storage technologies beyond lithium has become a prominent slice of global energy research portfolio. The alternative technologies play a vital role in shaping the future landscape of energy storage, from electrified mobility to the efficient utilization of renewable energies and further to large-scale stationary energy storage. Potassium-ion batteries (PIBs) are a promising alternative given its chemical and economic benefits, making a strong competitor to LIBs and sodium-ion batteries for different applications. However, many are unknown regarding potassium storage processes in materials and how it differs from lithium and sodium and understanding of solid–liquid interfacial chemistry is massively insufficient in PIBs. Therefore, there remain outstanding issues to advance the commercial prospects of the PIB technology. This Roadmap highlights the up-to-date scientific and technological advances and the insights into solving challenging issues to accelerate the development of PIBs. We hope this Roadmap aids the wider PIB research community and provides a cross-referencing to other beyond lithium energy storage technologies in the fast-pacing research landscape

    Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity.

    Get PDF
    Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 Ă— 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity
    • …
    corecore