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Diabetic cardiomyopathy (DCM), a common consequence of longstanding diabetes

mellitus, is initiated by death of cardiomyocyte. Hyperglycemia-induced reactive

oxygen species (ROS) overproduction is a major contributor of the chronic low-grade

inflammation that characterizes as the DCM. ROS may promote the activation of

nucleotide-binding oligomerization domain like receptor (NLR) pyrin domain containing

3 (NLRP3) inflammasome, a novel regulator of inflammation and cell death, by

nuclear factor-kB (NF-κB) and thioredoxin interacting/inhibiting protein (TXNIP). NLRP3

inflammasome regulates the death of cardiomyocyte and activation of fibroblast in

DCM, which is involved in the structural and functional disorder of DCM. However,

comprehensive understanding of molecular mechanisms linking NLRP3 inflammasome

and disorder of cardiomyocyte and fibroblast in DCM is lacking. Here, we review

the molecular mechanism(s) of NLRP3 inflammasome activation in response to

hyperglycemia in DCM.

Keywords: NLRP3 inflammasome, thioredoxin interacting/inhibiting protein, pyroptosis, inflammation, diabetic

cardiomyopathy

INTRODUCTION

Diabetic cardiomyopathy (DCM), one of the severe complication of diabetes mellitus, is the
leading cause of death in diabetes patients (Shaw et al., 2010). DCM is characterized by structural
and functional disorders, including myocardial cell death, myocardial fibroblast activation, left
ventricular dysfunction, and metabolic deregulation (Westermeier et al., 2015). Among them,
the death of cardiomyocyte is thought to be the basic change of DCM, which initiates cardiac
remodeling and results in left ventricular dysfunction (Kuethe et al., 2007; Liu et al., 2013).

From the standpoints of cellular death and inflammation, a newly described inflammatory
mechanism fundamental to innate immune system is proposed to contribute to DCM (Luo et al.,
2014a,b). In particular, the nucleotide-binding oligomerization domain like receptor (NLR) pyrin
domain containing 3 (NLRP3) inflammasome, expressed abundantly in cardiomyotytes, may play
important roles in the process of myocardial cell death.

A growing list of molecules has been examined as possible molecular markers for heart failure
(HF) and cardiovascular disease (CVD), exemplified by the myocyte injury markers troponins
I and T, the myocyte stress markers Brain natriuretic peptide (BNP) and ST2/IL-33, and the
inflammation markers C-reactive protein (CRP) and certain cytokines (TNF, IL-1β, and IL-
18; Braunwald, 2008). Troponin I and T are used to diagnose acute myocardial infarction and
prognose thrombotic ACS. BNP and NT-pro-BNP are used to predict death or re-hospitalization
for HF in a number of conditions and distinguish acute from chronic HF. ST2/IL-33 also can be
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used to predict cardiac damage and disease progression. CRP
measurement is a useful tool for determining prognosis in HF
andmyocarditis patients. According to the “cytokine hypothesis,”
cytokines play important roles in the pathogenesis of HF and
CVD and are valuable to indicate inflammation and disease
progression.

Increasing evidence reveals that NLRP3 inflammasome can be
used as a promising molecular marker for future development
of effective and targeted therapies with lower toxicity in DCM
and other CVD. We found that the protective effect of the
anti-inflammation drug rosuvastatin (RSV) was associated with
its ability to inhibit the activation of NLRP3 inflammasome
via TXNIP and suppress the phosphorylation of MAPK signal
pathways in DCM (Luo et al., 2014a). The synthetized NLRP3
inflammasome inhibitor INF4E was also found to protect
against the IR-induced myocardial injury by inhibiting NLRP3
inflammasome, leading to the activation of the prosurvival
RISK pathway and improvement in mitochondrial function
(Mastrocola et al., 2016b). Since previous anti-inflammatory
drug therapy can lead to compromised host defense or
secondary inflammatory processes due to the compensatory
responses, targeting specific inflammatory pathways (such as
NLRP3 inflammasome) may provide a more precise approach
to reducing deleterious inflammation without affecting other
innate host defense (Butts et al., 2015). Moreover, blocking
early inflammatory mediators such as TXNIP (as well as
NLRP3 inflammasome components) that significantly induced
by hyperglycemia will represent the excellent targets to prevent
diabetes and its complications DCM (Singh, 2014). In this
review, we will summarize the available evidence, including
the regulatory mechanism and biological function of NLRP3
inflammasome in DCM, which will elucidate the significance of
NLRP3 inflamamsome as the molecular marker of DCM.

NLRP3 INFLAMMASOME BIOLOGY

NLRP3 inflammasome consists of NLRP3, apoptosis-associated
speck-like protein containing a caspase recruitment domain
(ASC) and pro-caspase-1 (Shao et al., 2015). NLRP3 contains
three domains: a C-terminal leucine-rich repeats domain (LRRs),
a central nucleotide binding and oligomerization domain
(NACHT), and an N-terminal pyrin domain (PYD). ASC is
composed of a C-terminal caspase recruitment domain (CARD)
and an N-terminal PYD. Pro-caspase-1 is consists of a CARD, a
p20 and a p10 domain (Jo et al., 2016). Once activated, the PYD of
NLRP3 could bind to that of ASC, and subsequently the CARD of
ASC recruits and interacts with pro-caspase-1. These interactions
form the NLRP3 inflammasome and promote the autocatalytic
cleavage of pro-caspase-1, which results in the production of
activated caspase-1 (Lamkanfi and Dixit, 2014).

The activated caspase-1 has two major functions: the
regulated function that processes pro-IL-18 and pro-IL-1β into
their mature forms (IL-18 and IL-1β) and the novel function
that induces pyroptosis. Accumulated evidence indicated
that IL-18 and IL-1β were important proinflammatory
cytokines in the development of CVD by suppressing

cardiac contractility, promoting myocardial hypertrophy,
and inducing cardiomyocyte apoptosis (Loppnow et al., 2001;
Apostolakis et al., 2008; Qamar and Rader, 2012). Pyroptosis, an
inflammatory form of programmed cell death, was dependent
on caspase-1 activity (Guarda and So, 2010). The morphology of
pyroptosis partially overlaps with both apoptosis and necrosis
(Coll et al., 2011). Similar to apoptotic cells, pyroptotic cells
incur DNA damage, TUNEL staining positive, annexin V
staining positive (Miao et al., 2011). As in necrosis, pyroptosis
triggers pore formation in the cell membrane, release of pro-
inflammatory cytosolic content, and cell lysis. Pyroptosis has
been found in response to infection with several bacteria and
viruses (Allen et al., 2009; Bergsbaken et al., 2009). However,
aberrant or excessive activation of the NLRP3 inflammasome
contribute to development of autoimmune and even metabolic
diseases, such as type 2 diabetes (Donath and Shoelson, 2011),
atherosclerotic disease (Rajamaki et al., 2016; Wang et al., 2017),
obesity (Ahmad et al., 2016), gouty Arthritis (Liu Y. F. et al.,
2016; Table 1). Recently, we and other researchers reported
that pyroptosis were involved in non-infectious disease, such as
atherosclerosis and DCM (Luo et al., 2014b; Wree et al., 2014).

THE ACTIVATION OF NLRP3
INFLAMMASOME IN DCM

A diverse set of pathogen- and host-derived ligands can activate
the NLRP3 inflammasome. These include pathogen-associated
molecular patterns (PAMPs), bacterial pore-forming toxins,
hemozoin, silica, asbestos, UV light, ATP, glucose, MSU, calcium
pyrophosphate dehydrate, amyloid β, hyaluronan, alum, danger-
associated molecular patterns (DAMPs), and environmental
stimuli (Schroder et al., 2010). The stimuli of NLRP3
inflammasome were classically seen to converge on three distinct
signal pathways: (1) NLRP3 senses potassium efflux and loss
of membrane integrity through purinergic receptor P2X7 and
pannexin-1, respectively; (2) crystalline or particulate-accelerated
lysosomal destabilization promote cathepsin B to direct NLRP3
ligands; (3) DAMP/PAMP-induced reactive oxygen species
(ROS) trigger the activation of NLRP3 inflammasome (Zhou
et al., 2010). Recent researches have indicated various other
activating mechanisms of NLRP3 inflammasome. Among these,
mitochondrial dysfunction was thought to be the pivotal step
for the NLRP3 inflammasome activation induced by NLRP3
agonists. Mitochondria can promote NLRP3 inflammasome
activation through mitochondrial-derived signals, such as

TABLE 1 | NLRP3 inflammasome and metabolic disorders.

Metabolic disorders Activators/signals Major contributors

Atherosclerotic disease Cholesterol crystals IL-1β, IL-18

Type 2 diabetes Amylin/IAPP, glucose,

palmitate, and ceramide

IL-1β

Obesity High fat diet induces

cholesterol crystal formation

IL-1β, IL-18

Gouty arthritis Monosodium urate (MSU) IL-1β
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mROS, mtDNA, and cadiolipin (Zhou et al., 2010; Nakahira
et al., 2011; Iyer et al., 2013). Besides mitochondria, ER-stress,
guanylate-binding protein 5 (GBP5), and double-stranded
RNA-dependent protein kinase (PKR) were also shown to be
correlated with NLRP3 inflammasome activation (Lerner et al.,
2012; Lu et al., 2012; Shenoy et al., 2012).

During NLRP3 inflammasome activation, the agonist can
induce an initial priming step (the first signal) that promotes
NLRP3 expression, followed by the structural modulation step
(the second signal) that induces NLRP3 inflammasome assembly.
Nuclear factor-kB (NF-κB), which controls the transcriptional
induction of NLRP3, was shown to provide the first signal in the
activation of NLRP3 inflammasome (Corsini et al., 2013; Liao
et al., 2013; Luo et al., 2014b). Thioredoxin interacting/inhibiting
protein (TXNIP), deubiquitination, and oxidized mitochondrial
DNA were suggested to provide the second signal by binding
with NLRP3 directly and modulating its oligomerization (Zhou
et al., 2010; Luo et al., 2014b). Selected DAMPs associated
with atherosclerosis are found to provide both signals for
inflammasome activation (Robbins et al., 2014).

Type 1 diabetes, resulting from the autoimmune destruction
of insulin-producing β cells in the pancreas, is characterized
by low level of insulin and hyperglycemia (Nakayama et al.,
2015). Most diabetes patients have type 2 diabetes, which is
characterized by hyperglycemia, hyperlipidemia, and insulin
resistance (Pandey et al., 2015). Several studies have indicated
that NLRP3 inflammasome expression was increased in
circumstance of glycotoxicity and lipotoxicity (Zhou et al.,
2010; Vandanmagsar et al., 2011). Furthermore, NLRP3
inflammsome could be activated by saturated fatty acid,
ceramides, modified LDL, and hyperglycemia in obesity and
type 2 diabetes (Wen et al., 2011; Jin and Flavell, 2013). During
the process of DCM, DAMP -induced ROS generation is the
most well-studied pathway of NLRP3 inflammasome activation.
Our previous studies have addressed the role of NLRP3
inflammasome in DCM using the rat model of T2DM (Luo
et al., 2014a,b). High glucose-mediated ROS generation could
upregulate NF-κB phosphorylation and TXNIP expression,
which account for NLRP3 priming and the secondary step of
activation (Bryant and Fitzgerald, 2009; Franchi et al., 2012;
Kumar et al., 2013). NF-κB has been shown to increase the
expression of NLRP3, pro-caspase-18 and pro-IL-1β, which
facilitating the activation of NLRP3 inflammasome (Donath
et al., 2010; Qiao et al., 2012; Boaru et al., 2015). TXNIP has
been reported to be another essential link between ROS and
NLRP3 inflammasome by priming the expression of NLRP3
inflammasome or modulating the structure of NLRP3 directly
(Martinon, 2010).

Lipotoxicity occurring in type 2 diabetes plays a non-
negligible role on inflammasome assembly. Free fatty acid
might induce the activation of NLRP3 inflammasome by ROS
production and ER stress (Legrand-Poels et al., 2014). And
intramyocellular lipid accumulation in cardiomyocytes has
been frequently reported in diet-induced diabetes (Wolf et al.,
2016; Zlobine et al., 2016). However, there was no evidence
that intramyocellular lipid could promote the activation of
intercellular NLRP3 inflammasome directly.

NLRP3 INFLAMMASOME-MEDIATED
INFLAMMATION IN DCM

Glucose has been reported to be one of the effective activators
of NLRP3 inflammasome (Shi H. et al., 2015; Zu et al., 2015).
Recent data also suggest that NLRP3 is responsible for the
cardiac inflammation of glycotoxicity during the process of
T2DM and DCM (Vandanmagsar et al., 2011; Luo et al.,
2014b). IL-1β and IL-18 are the main effectors of ROS-
mediated NLRP3 inflammasome activation in DCM. IL-1β and
IL-18 have a central role in the cardiomyocyte apoptosis and
fibroblast activation of DCM, which is thought to be the
initiator of the structural disorder (Santiago et al., 2014; Somanna
et al., 2015). NLRP3 inflammasome-mediated pyroptosis in
DCM.

Pyroptosis is a caspase-1- or caspase-11-dependent cell death
process, which is characterized by plasma membrane pore
formation, cell swelling, cell osmotic lysis, and release of
proinflammastory intracellular contents (de Zoete et al., 2014;
Shalini et al., 2015). Pyroptosis was firstly reported in the research
of the infection with Shigell flexneri and Salmonell typhimurium,
which was considered to be key responses of immune response
to pathogens (Zychlinsky et al., 1992; Monack et al., 1996).
Subsequent studies discovered that pyroptosis also occurred
in cells induced by non-infectious stimuli (Jang et al., 2015;
Lebeaupin et al., 2015; Lopez-Pastrana et al., 2015). Within the
type 2 diabetes rat model and H9c2 cardiomyoctye cell line, our
previous work showed the important characteristics of pyroptosis
in myocardium and cardiomyocyte, including activated caspase-
1, cytoplasmic swelling, and nucleus DNA damage. NLRP3-
siRNA lentivirus treatment, followed by reduced activation of
caspase-1, abrogated the pyroptosis both in the myocardium
of DCM and the high glucose-treated cardiomyocyte. NLRP3
inflammasome turned out to be a pivotal regulator of caspase-
1-depended pyroptosis in the pathogenesis of DCM.

Not much research has been done to explore the key
molecules involved in caspase-1-induced pyroptosis. Recent
studies identified that the protein gasdermin D (GSDMD),
encoded by a gene named Gsdmd, was required and sufficient
for pyroptosis in mouse and human cells (He et al., 2015;
Kayagaki et al., 2015; Shi J. et al., 2015; Shi et al., 2017).
Mechanistically, caspase-1 and other inflammatory caspases
(caspase-4/5/11) cleave GSDMD into two fragments, and the
resulting amino-terminal fragment promotes pyroptosis by its
pore-forming activity to rupture themembrane (Ding et al., 2016;
Liu X. et al., 2016). Given the similar pore-forming activity in
different gasdermins, the concept of pyroptosis is thus redefined
as gasdermin-mediated programmed necrotic cell death (Shi
et al., 2017). Other pyroptosis-inducing caspase-1 substrates still
await to be discovered.

NLRP3 INFLAMMASOME-PROMOTED
FIBROSIS IN DCM

Our previous work showed that NLRP3-siRNA lentivirus
treatment reduced the aberrant expression of collage I and III
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in myocardium of DCM rat model (Luo et al., 2014b). Other
research revealed that NLRP3 inflammasome suppressed the
cAMP expression of cardiac fibroblast in mice with sepsis, which
inhibited the cardiac contraction (Zhang et al., 2014). With
TGF-β stimulation, NLRP3 inflammasome increased in cardiac
fibroblast, which facilitated the myofibroblast and receptor
associated Smad (R-Smad) activation. The activated R-Smad
could associate with co-Smad to form the transcription complex
that promotes the expression of profibrotic gene (Bracey et al.,
2014). Whether the R-Smad is the pivotal link between NLRP3
inflammasome and high glucose-induced cardiac fibroblast
activation remains unknown.

CONCLUSIONS

NLRP3 inflammasome is a multiprotein signaling complex
of the innate immune system essential for controlling the
inflammatory response and coordinating antimicrobial host
defense. Hyperglycemia-induced ROS overproduction is
a major contributor of chronic low-grade inflammation.
Therefore, NLRP3-dependent pyroptosis and maturation of
pro-inflammatory effectors (IL-1β/IL-18) induced by ROS could
contribute to development of autoimmune and even metabolic
diseases, such as DCM.

Identification of NLRP3 inflammasome platforms is the main
breakthrough on DCM research, as it is in the area of HF
(Butts et al., 2015) and other cardiometabolic diseases (Janket
et al., 2015; Mastrocola et al., 2016a). ROS-dependent NF-
κB and TXNIP appear to regulate both priming and post-
translational steps in the activation of NLRP3 inflammasome.
After NLRP3 inflammasome activation, caspase-1 promotes
a novel programmed cell death process, named pyroptosis,
in cardiomyocyte of DCM. Pro-inflammatory cytokines IL-
1β and IL-18 are direct substrates of caspase-1. Caspase-1 is
activated by the NLRP3 inflammasome, in which a central
platform, consisted of NLRP3, ASC1, and caspase1, recognizes
an unknown signal or ligand. Active caspase-1 then cleaves and
maturates of these cytokines and triggers pyroptosis. Together
with this observation, caspase-1-mediated IL-1β and IL-18
activation initiate apoptosis of cardiomyocyte and activation
of cardiofibroblast. On the other hand, NLRP3 inflammasome
can induce fibrosis in DCM (Figure 1). Further investigations
on the mechanism underlying caspase-1-regulated pyroptosis
and IL-18/IL-1β-regulated fibroblast disorder are required to
elucidate the function of NLRP3 inflammasome in DCM.

As in DCM, NLRP3 inflammasome also plays an important
role in myocardial ischemia/reperfusion (I/R) injury after high-
fat high-fructose (HFHF) diet, which is a common type of

FIGURE 1 | NLRP3 inflammasome activation in DCM. Hyperglycemia-induced reactive oxygen species (ROS) leads to nuclear factor-kB (NF-κB) and TXNIP

overexpression. NF-κB increases the expression of NLRP3, pro-IL-18, and pro-IL-1β. TXNIP modulates the biological structure of NLRP3 leading to NLRP3

inflammasome assembly and pro-caspase-1 (pro-casp-1) autocleavage. Active caspase-1 (Casp-1) promotes pro-IL-18 and pro-IL-1β maturation, which facilitate

inflammatory reaction. On the other hand, active caspase-1 cleaves GSDMD within the linker between its N-terminal (blue) and C-terminal (magenta). The released

GSDMD-N domain oligomerizes to generate membrane pores, which disrupts the osmotic potential and leads to cell swelling and eventual lysis.
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FIGURE 2 | Crosstalk between NLRP3 inflammasome and RISK/HIF-2α in myocardial I/R injury. The HFHF diet induced-hyperlipidemia and hyperglycemia promote

overexpression of ROS and then triggers the assembly of NLRP3 inflamamsome. The activation of NLRP3 inflammasome increase the secretion of IL-1β and IL-18.

The proinflammatory cytokines accelerate the oxidative stress of mitochondrial, which in turn promotes the activation of NlRP3 inflammasome. Hyperlipidemia and

hyperglycemia inhibit the phosphorylation of Reperfusion Injury Salvage Kinases (RISK) pathway (including AKT, ERK, and GSK-3β), and negatively impacts hypoxia

inducible factor-2α (HIF-2α), which can worsen the mitochondrial oxidative unbalance. The I/R challenge can suppress the phosphorylation of AKT and GSK-3β, and

induce the expression of ROS and activation of NLRP3.

cardiometabolic disease (Mastrocola et al., 2016a). The HFHF
diet mouse showed excessive intake of fatty acids and sugars
in cardiomyocyte, which induced the overexpression of ROS
and then triggered the activation of NLRP3 inflamamsome.
The upregulation of NLRP3 inflammasome enhanced the
susceptibility to (I/R) injury by promoting the mitochondrial
disorder via IL-1β and IL-18. On the other hand, the
protective pathways of Reperfusion Injury Salvage Kinases
(RISK) pathway (including AKT, ERK, and GSK-3β) and
hypoxia inducible factor-2α (HIF-2α) was inhibited by fatty
acids and sugar. The impairment of RISK/HIF-2α pathway can
worsen the mitochondrial oxidative stress regulated by NLRP3
inflammasome, which increase the susceptibility to I/R injury in
HFHF diet mouse (Figure 2).

As mentioned above, molecular markers are important tools
for clinical management in CVD, facilitating in early detection of
disease, diagnostic, monitor of disease state, assessment of disease
risk, determination of therapy, and evaluation of therapeutic
activity (Braunwald, 2008). Inflammation associated markers
(CRP, cytokines and the NLRP3 inflammasome) are important in
that they are also risk factors directly involved in the pathogenesis
of CVD. Of these, the NLRP3 inflammasome is unique in that it
provides a mechanistic explanation of cytokine activation which
leads to disease progression (Luo et al., 2014a; Mastrocola et al.,

2016b). Therefore, understanding the molecular mechanism of
the NLRP3 inflammasome activation and targeting specifically
the NLRP3 inflammasome and its interacting counterparts (e.g.,
TXNIP) will be of great value in clinical management of DCM
and other CVD (Singh, 2014; Butts et al., 2015).
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