22 research outputs found

    Environmental filtering, spatial processes and biotic interactions jointly shape different traits communities of stream macroinvertebrates

    Get PDF
    The metacommunity concept has been widely used to explain the biodiversity patterns at various scales. It considers the influences of both local (e.g., environmental filtering and biotic interactions) and regional processes (e.g., dispersal limitation) in shaping community structures. Compared to environmental filtering and spatial processes, the influence of biotic interactions on biodiversity patterns in streams has received limited attention. We investigated the relative importance of three ecological processes, namely environmental filtering (including local environmental and geo-climatic factors), spatial processes and biotic interactions (represented by interactions of macroinvertebrates and diatom), in shaping different traits of macroinvertebrate communities in subtropical streams, Eastern China. We applied variance partitioning to uncover the pure and shared effects of different ecological processes in explaining community variation. The results showed that environmental filtering, spatial processes, and biotic interactions jointly determined taxonomic and trait compositions of stream macroinvertebrates. Spatial processes showed a stronger influence in shaping stream macroinvertebrate communities than environmental filtering. The contribution of biotic interactions to explain variables was, albeit significant, rather small, which was likely a result of insufficient representation (by diatom traits) of trophic interactions associated with macroinvertebrates. Moreover, the impact of three ecological processes on macroinvertebrate communities depends on different traits, especially in terms of environmental filtering and spatial processes. For example, spatial processes and environmental filtering have the strongest effect on strong dispersal ability groups; spatial processes have a greater effect on scrapers than other functional feeding groups. Overall, our results showed that the integration of metacommunity theory and functional traits provides a valuable framework for understanding the drivers of community structuring in streams, which will facilitate the development of effective bioassessment and management strategies.Peer Reviewe

    Environmental filtering, spatial processes and biotic interactions jointly shape different traits communities of stream macroinvertebrates

    Get PDF
    The metacommunity concept has been widely used to explain the biodiversity patterns at various scales. It considers the influences of both local (e.g., environmental filtering and biotic interactions) and regional processes (e.g., dispersal limitation) in shaping community structures. Compared to environmental filtering and spatial processes, the influence of biotic interactions on biodiversity patterns in streams has received limited attention. We investigated the relative importance of three ecological processes, namely environmental filtering (including local environmental and geo-climatic factors), spatial processes and biotic interactions (represented by interactions of macroinvertebrates and diatom), in shaping different traits of macroinvertebrate communities in subtropical streams, Eastern China. We applied variance partitioning to uncover the pure and shared effects of different ecological processes in explaining community variation. The results showed that environmental filtering, spatial processes, and biotic interactions jointly determined taxonomic and trait compositions of stream macroinvertebrates. Spatial processes showed a stronger influence in shaping stream macroinvertebrate communities than environmental filtering. The contribution of biotic interactions to explain variables was, albeit significant, rather small, which was likely a result of insufficient representation (by diatom traits) of trophic interactions associated with macroinvertebrates. Moreover, the impact of three ecological processes on macroinvertebrate communities depends on different traits, especially in terms of environmental filtering and spatial processes. For example, spatial processes and environmental filtering have the strongest effect on strong dispersal ability groups; spatial processes have a greater effect on scrapers than other functional feeding groups. Overall, our results showed that the integration of metacommunity theory and functional traits provides a valuable framework for understanding the drivers of community structuring in streams, which will facilitate the development of effective bioassessment and management strategies

    GEP, a Local Growth Factor, is Critical for Odontogenesis and Amelogenesis

    No full text
    Granulin epithelin precursor (GEP) is a new growth factor that functions in brain development, chondrogenesis, tissue regeneration, tumorigenesis, and inflammation. The goal of this study was to study whether GEP was critical for odontogenesis and amelogenesis both in vivo and in vitro. The in situ hybridization and immunohistochemistry data showed that GEP was expressed in both odontoblast and ameloblast cells postnatally. Knockdown of GEP by crossing U6-ploxPneo-GEP and Sox2-Cre transgenic mice led to a reduction of dentin thickness, an increase in predentin thickness, and a reduction in mineral content in enamel. The in vitro application of recombinant GEP up-regulated molecular markers important for odontogenesis (DMP1, DSPP, and ALP) and amelogenesis (ameloblastin, amelogenin and enamelin). In conclusion, both the in vivo and the in vivo data support an important role of GEP in tooth formation during postnatal development.</p

    Coordination behavior of erbium chloride hydrate with diethylammonium diethyldithiocarbamate

    No full text
    The complex of erbium chloride lower hydrate with diethylammonium diethyldithiocarbamate (D-DDC) has been synthesized conveniently in absolute alcohol and dry N2 atmosphere. The title complex was identified as Et2NH2[Er(S2CNEt2)4] by chemical and elemental analyses, the bonding characteristics of which was characterized by IR. The enthalpies of solution of erbium chloride hydrate and D-DDC in absolute alcohol at 298.15 K and the enthalpies change of liquid-phase reaction of formation for Et2NH2[Er(S2CNEt 2)4 at different temperatures were determined, by microealorimetry. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters (the apparent activation energy, the pre-exponential constant and die reaction order) of liquid phase reaction of formation were obtained. The enthalpy change of the solid-phase title reaction at 298.15 K was calculated by a thermochemical cycle.EI1273-2827

    Microstructure and mechanical properties of Mo-Cu-Zr composites fabricated via microwave sintering

    No full text
    Mo–Cu composites exhibit excellent physical and mechanical properties, while the problems of densification and interface seriously limit their application. In this paper, the effect of element Zr on the properties of Mo–Cu composites is investigated aiming to overcome these critical issues. Various compositions of Mo–Cu–Zr ternary composites were fabricated via ball milling, cold isostatic pressing and microwave sintering. Microstructures and mechanical properties of the prepared composites were systematically characterized and analyzed. The results show that the density and mechanical properties of the composites increase with the increase of Zr content, and the 50Mo30Cu20Zr composite achieves the highest relative density of 97.6%, hardness of 314.4 HV and compressive strength of 805.9 MPa. The increase of Zr content reduces the sintering activation energy and leads to the improvement of density. Simultaneously, the element Zr can form solid solutions and in-situ synthesis intermetallic compounds with Cu matrix, which leads to solid solubility strengthening and dispersion strengthening. Moreover, the interface between Mo and Cu phase is found to have been reinforced by the in-situ intermetallic compound particles embedded in the interface. This work provides an important reference for research of densification and mechanical property of Mo–Cu composites

    Functionalized Flexible Soft Polymer Optical Fibers for Laser Photomedicine

    No full text
    Optical waveguides allow propagating light through biological tissue in optogenetics and photomedicine applications. However, achieving efficient light delivery to deep tissues for long‐term implantation has been limited with solid‐state optical fibers. Here, a method is created to rapidly fabricate flexible, functionalized soft polymer optical fibers (SPOFs) coupled with silica fibers. A step‐index core/cladded poly(acrylamide‐co‐poly(ethylene glycol) diacrylate)/Ca alginate SPOF is fabricated through free‐radical polymerization in a mold. The SPOF is integrated with a solid‐state silica fiber coupler for efficient light delivery. The cladded SPOF shows ≈1.5‐fold increase in light propagation compared to the noncladded fiber. The optical loss of the SPOF is measured as 0.6 dB cm−1 at the bending angle of 70° and 0.28 dB cm−1 through a phantom tissue. The SPOF (inner Ø = 200 ”m) integrated with a 21 gauge needle (inner Ø = 514 ”m) is inserted within a porcine tissue. The intensity of light decreases ≈60%, as the SPOF is implanted as deep as 2 cm. Doped with fluorescent dye and gold nanoparticles, the SPOF fiber exhibits yellow‐red and red illumination. Living cells can also be incorporated within the SPOF with viability. The flexible SPOFs may have applications in photodynamic light therapy, optical biosensors, and photomedicine.H.B. thanks the Wellcome Trust and Leverhulme Trust for research funding. Y.X.Y. thanks National Natural Science Foundation of China (No. 51403168)
    corecore