166 research outputs found

    Modeling Spatial Relations of Human Body Parts for Indexing and Retrieving Close Character Interactions

    Get PDF
    Retrieving pre-captured human motion for analyzing and synthesizing virtual character movement have been widely used in Virtual Reality (VR) and interactive computer graphics applications. In this paper, we propose a new human pose representation, called Spatial Relations of Human Body Parts (SRBP), to represent spatial relations between body parts of the subject(s), which intuitively describes how much the body parts are interacting with each other. Since SRBP is computed from the local structure (i.e. multiple body parts in proximity) of the pose instead of the information from individual or pairwise joints as in previous approaches, the new representation is robust to minor variations of individual joint location. Experimental results show that SRBP outperforms the existing skeleton-based motion retrieval and classification approaches on benchmark databases

    Preliminary results of trial NPC-0501 evaluating the therapeutic gain by changing from concurrent-adjuvant to induction-concurrent chemoradiotherapy, changing from fluorouracil to capecitabine, and changing from conventional to accelerated radiotherapy fractionation in patients with locoregionally advanced nasopharyngeal carcinoma

    Get PDF
    © 2014 American Cancer Society. BACKGROUND A current recommendation for locoregionally advanced nasopharyngeal carcinoma (NPC) is conventional fractionated radiotherapy with concurrent cisplatin plus adjuvant cisplatin and fluorouracil (PF). In this randomized trial, the authors evaluated the potential therapeutic benefit from changing to an induction-concurrent chemotherapy sequence, replacing fluorouracil with oral capecitabine, and/or using accelerated rather than conventional radiotherapy fractionation. METHODS Patients with stage III through IVB, nonkeratinizing NPC were randomly allocated to 1 of 6 treatment arms. The protocol was amended in 2009 to permit confining randomization to the conventional fractionation arms. The primary endpoint was progression-free survival. Secondary endpoints included overall survival and safety. RESULTS In total, 803 patients were accrued, and 706 patients were randomly allocated to all 6 treatment arms. Comparisons of induction PF versus adjuvant PF did not indicate a significant improvement. Unadjusted comparisons of induction cisplatin and capecitabine (PX) versus adjuvant PF indicated a favorable trend in progression-free survival for the conventional fractionation arm (P = .045); analyses that were adjusted for other significant factors and fractionation reflected a significant reduction in the hazards of disease progression (hazard ratio [HR], 0.54; 95% confidence interval [CI], 0.36-0.80) and death (HR, 0.42; 95% CI, 0.25-0.70). Unadjusted comparisons of induction sequences versus adjuvant sequences did not reach statistical significance, but adjusted comparisons indicated favorable improvements by induction sequence. Comparisons of induction PX versus induction PF revealed fewer toxicities (neutropenia and electrolyte disturbance), unadjusted comparisons of efficacy were statistically insignificant, but adjusted analyses indicated that induction PX had a lower hazard of death (HR, 0.57; 95% CI, 0.34-0.97). Changing the fractionation from conventional to accelerated did not achieve any benefit but incurred higher toxicities (acute mucositis and dehydration). CONCLUSIONS Preliminary results indicate that the benefit of changing to an induction-concurrent sequence remains uncertain; replacing fluorouracil with oral capecitabine warrants further validation in view of its convenience, favorable toxicity profile, and favorable trends in efficacy; and accelerated fractionation is not recommended for patients with locoregionally advanced NPC who receive chemoradiotherapy.postprin

    iCartiGD: the Integrated Cartilage Gene Database

    Get PDF
    BACKGROUND: Diseases of cartilage, such as arthritis and degenerative disc disease, affect the majority of the general population, particularly with ageing. Discovery and understanding of the genes and pathways involved in cartilage biology will greatly assist research on the development, degeneration and disorders of cartilage. DESCRIPTION: We have established the Integrated Cartilage Gene Database (iCartiGD) of genes that are known, based on results from high throughput experiments, to be expressed in cartilage. Information about these genes is extracted automatically from public databases and presented as a single page report via a web-browser. A variety of flexible search options are provided and the chromosomal distribution of cartilage associated genes can be presented. CONCLUSION: iCartiGD provides a comprehensive source of information on genes known to be expressed in cartilage. It will remain current due to its automatic update capability and provide researchers with an easily accessible resource for studies involving cartilage. Genetic studies of the development and disorders of cartilage will benefit from this database

    Gold-iron oxide (Au/Fe3O4) magnetic nanoparticles as the nanoplatform for binding of bioactive molecules through self-assembly

    Get PDF
    Nanomedicine plays a crucial role in the development of next-generation therapies. The use of nanoparticles as drug delivery platforms has become a major area of research in nanotechnology. To be effective, these nanoparticles must interact with desired drug molecules and release them at targeted sites. The design of these “nanoplatforms” typically includes a functional core, an organic coating with functional groups for drug binding, and the drugs or bioactive molecules themselves. However, by exploiting the coordination chemistry between organic molecules and transition metal centers, the self-assembly of drugs onto the nanoplatform surfaces can bypass the need for an organic coating, simplifying the materials synthesis process. In this perspective, we use gold-iron oxide nanoplatforms as examples and outline the prospects and challenges of using self-assembly to prepare drug-nanoparticle constructs. Through a case study on the binding of insulin on Au-dotted Fe3O4 nanoparticles, we demonstrate how a self-assembly system can be developed. This method can also be adapted to other combinations of transition metals, with the potential for scaling up. Furthermore, the self-assembly method can also be considered as a greener alternative to traditional methods, reducing the use of chemicals and solvents. In light of the current climate of environmental awareness, this shift towards sustainability in the pharmaceutical industry would be welcomed

    Circulating CD133+VEGFR2+ and CD34+VEGFR2+ cells and arterial function in patients with beta-thalassaemia major

    Get PDF
    Arterial dysfunction has been documented in patients with beta-thalassaemia major. This study aimed to determine the quantity and proliferative capacity of circulating CD133+VEGFR2+ and CD34+VEGFR2+ cells in patients with beta-thalassaemia major and those after haematopoietic stem cell transplantation (HSCT), and their relationships with arterial function. Brachial arterial flow-mediated dilation (FMD), carotid arterial stiffness, the quantity of these circulating cells and their number of colony-forming units (CFUs) were determined in 17 transfusion-dependent thalassaemia patients, 14 patients after HSCT and 11 controls. Compared with controls, both patient groups had significantly lower FMD and greater arterial stiffness. Despite having increased CD133+VEGFR2+ and CD34+VEGFR2+ cells, transfusion-dependent patients had significantly reduced CFUs compared with controls (p = 0.002). There was a trend of increasing CFUs across the three groups with decreasing iron load (p = 0.011). The CFUs correlated with brachial FMD (p = 0.029) and arterial stiffness (p = 0.02), but not with serum ferritin level. Multiple linear regression showed that CFU was a significant determinant of FMD (p = 0.043) and arterial stiffness (p = 0.02) after adjustment of age, sex, body mass index, blood pressure and serum ferritin level. In conclusion, arterial dysfunction found in patients with beta-thalassaemia major before and after HSCT may be related to impaired proliferation of CD133+VEGFR2+ and CD34+VEGFR2+ cells

    Local structural alignment of RNA with affine gap model

    Get PDF
    BACKGROUND: Predicting new non-coding RNAs (ncRNAs) of a family can be done by aligning the potential candidate with a member of the family with known sequence and secondary structure. Existing tools either only consider the sequence similarity or cannot handle local alignment with gaps. RESULTS: In this paper, we consider the problem of finding the optimal local structural alignment between a query RNA sequence (with known secondary structure) and a target sequence (with unknown secondary structure) with the affine gap penalty model. We provide the algorithm to solve the problem. CONCLUSIONS: Based on an experiment, we show that there are ncRNA families in which considering local structural alignment with gap penalty model can identify real hits more effectively than using global alignment or local alignment without gap penalty model.published_or_final_versio

    Oxidative stress in children late after Kawasaki disease: relationship with carotid atherosclerosis and stiffness

    Get PDF
    Background: Persistent arterial dysfunction in patients with a history of Kawasaki disease (KD) and an integral role of oxidative stress in the development of cardiovascular disease are increasingly recognized. We sought to test the hypothesis that oxidative stress is increased in KD patients and related to carotid atherosclerotic changes and stiffness. Methods: We compared the serum levels of oxidative stress biomarkers, carotid intima-media thickness (IMT), and carotid stiffness index among KD patients with coronary aneurysms (n = 32), those without coronary complications (n = 19), and controls (n = 32). Results: Compared with controls, patients with coronary aneurysms had significantly higher serum levels of malonaldehyde (2.62 ± 0.12 μM vs 2.22 ± 0.07 μM, p = 0.014) and hydroperoxides (26.50 ± 1.13 μM vs 22.50 ± 0.62 μM, p = 0.008). A linear trend of the magnitude of oxidative stress in relation to inflammatory damage was observed for malonaldehyde (p = 0.018) and hydroperoxides (p = 0.014) levels. Serum malonaldehyde and hydroperoxide levels correlated positively with carotid IMT (p < 0.001 and p = 0.034, respectively) and stiffness index (p = 0.001 and p = 0.021, respectively). Multiple linear regression analysis identified serum malonaldehyde level as a significant determinant of carotid IMT (β = 0.31, p = 0.006) and stiffness (β = 0.27, p = 0.008). Conclusion: Our findings suggestoxidative stress is increased in KD patients with coronary aneurysms and is associated with carotid intima-media thickening and stiffening. © 2008 Cheung et al; licensee BioMed Central Ltd.published_or_final_versio

    Institutional difference and outward FDI: Evidence from China

    Get PDF
    This paper investigates the impact of institutional difference on China’s outward foreign direct investment (OFDI) through a gravity model. Our estimations are based on a large panel of 150 countries over the period 2003-2015. The results show that the institutional differences of government effectiveness and control of corruption between China and a host country have a statistically significant negative effect on China’s OFDI. In addition, our empirical evidence suggests that the ‘One Belt One Road’ policy does not have the expected positive effect on China’s OFDI. Consistent results are obtained from a set of robustness tests. Our findings provide a reasonable guideline for countries aiming to attract Chinese OFDI or seeking factors to boost it
    corecore