126 research outputs found
Infective endocarditis with Lactococcus garvieae in Japan: a case report
<p>Abstract</p> <p>Introduction</p> <p><it>Lactococcus garvieae </it>is a well-recognized fish pathogen, and it is considered a rare pathogen with low virulence in human infection. We describe the 11th case of <it>L. garvieae </it>infective endocarditis reported in the literature, and the first reported case in Japan.</p> <p>Case presentation</p> <p>We report a case of a 55-year-old Japanese woman who had native valve endocarditis with <it>L. garvieae</it>. The case was complicated by renal infarction, cerebral infarction, and mycotic aneurysms. After anti-microbial treatment, she was discharged from the hospital and is now well while being monitored in the out-patient clinic.</p> <p>Conclusion</p> <p>We encountered a case of <it>L. garvieae </it>endocarditis that occurred in a native valve of a healthy woman. The 16S ribosomal RNA gene sequencing was useful for the identification of this pathogen. Although infective endocarditis with <it>L. garvieae </it>is uncommon, it is possible to treat high virulence clinically.</p
Complete Genome Sequence and Comparative Analysis of the Fish Pathogen Lactococcus garvieae
Lactococcus garvieae causes fatal haemorrhagic septicaemia in fish such as yellowtail. The comparative analysis of genomes of a virulent strain Lg2 and a non-virulent strain ATCC 49156 of L. garvieae revealed that the two strains shared a high degree of sequence identity, but Lg2 had a 16.5-kb capsule gene cluster that is absent in ATCC 49156. The capsule gene cluster was composed of 15 genes, of which eight genes are highly conserved with those in exopolysaccharide biosynthesis gene cluster often found in Lactococcus lactis strains. Sequence analysis of the capsule gene cluster in the less virulent strain L. garvieae Lg2-S, Lg2-derived strain, showed that two conserved genes were disrupted by a single base pair deletion, respectively. These results strongly suggest that the capsule is crucial for virulence of Lg2. The capsule gene cluster of Lg2 may be a genomic island from several features such as the presence of insertion sequences flanked on both ends, different GC content from the chromosomal average, integration into the locus syntenic to other lactococcal genome sequences, and distribution in human gut microbiomes. The analysis also predicted other potential virulence factors such as haemolysin. The present study provides new insights into understanding of the virulence mechanisms of L. garvieae in fish
The Glial Scar-Monocyte Interplay: A Pivotal Resolution Phase in Spinal Cord Repair
The inflammatory response in the injured spinal cord, an immune privileged site, has been mainly associated with the poor prognosis. However, recent data demonstrated that, in fact, some leukocytes, namely monocytes, are pivotal for repair due to their alternative anti-inflammatory phenotype. Given the pro-inflammatory milieu within the traumatized spinal cord, known to skew monocytes towards a classical phenotype, a pertinent question is how parenchymal-invading monocytes acquire resolving properties essential for healing, under such unfavorable conditions. In light of the spatial association between resolving (interleukin (IL)-10 producing) monocytes and the glial scar matrix chondroitin sulfate proteoglycan (CSPG), in this study we examined the mutual relationship between these two components. By inhibiting the de novo production of CSPG following spinal cord injury, we demonstrated that this extracellular matrix, mainly known for its ability to inhibit axonal growth, serves as a critical template skewing the entering monocytes towards the resolving phenotype. In vitro cell culture studies demonstrated that this matrix alone is sufficient to induce such monocyte polarization. Reciprocal conditional ablation of the monocyte-derived macrophages concentrated at the lesion margins, using diphtheria toxin, revealed that these cells have scar matrix-resolving properties. Replenishment of monocytic cell populations to the ablated mice demonstrated that this extracellular remodeling ability of the infiltrating monocytes requires their expression of the matrix-degrading enzyme, matrix metalloproteinase 13 (MMP-13), a property that was found here to be crucial for functional recovery. Altogether, this study demonstrates that the glial scar-matrix, a known obstacle to regeneration, is a critical component skewing the encountering monocytes towards a resolving phenotype. In an apparent feedback loop, monocytes were found to regulate scar resolution. This cross-regulation between the glial scar and monocytes primes the resolution of this interim phase of spinal cord repair, thereby providing a fundamental platform for the dynamic healing response
An accurate and interpretable model for siRNA efficacy prediction
BACKGROUND: The use of exogenous small interfering RNAs (siRNAs) for gene silencing has quickly become a widespread molecular tool providing a powerful means for gene functional study and new drug target identification. Although considerable progress has been made recently in understanding how the RNAi pathway mediates gene silencing, the design of potent siRNAs remains challenging. RESULTS: We propose a simple linear model combining basic features of siRNA sequences for siRNA efficacy prediction. Trained and tested on a large dataset of siRNA sequences made recently available, it performs as well as more complex state-of-the-art models in terms of potency prediction accuracy, with the advantage of being directly interpretable. The analysis of this linear model allows us to detect and quantify the effect of nucleotide preferences at particular positions, including previously known and new observations. We also detect and quantify a strong propensity of potent siRNAs to contain short asymmetric motifs in their sequence, and show that, surprisingly, these motifs alone contain at least as much relevant information for potency prediction as the nucleotide preferences for particular positions. CONCLUSION: The model proposed for prediction of siRNA potency is as accurate as a state-of-the-art nonlinear model and is easily interpretable in terms of biological features. It is freely available on the web a
Chikungunya Virus Neutralization Antigens and Direct Cell-to-Cell Transmission Are Revealed by Human Antibody-Escape Mutants
Chikungunya virus (CHIKV) is an alphavirus responsible for numerous epidemics throughout Africa and Asia, causing infectious arthritis and reportedly linked with fatal infections in newborns and elderly. Previous studies in animal models indicate that humoral immunity can protect against CHIKV infection, but despite the potential efficacy of B-cell-driven intervention strategies, there are no virus-specific vaccines or therapies currently available. In addition, CHIKV has been reported to elicit long-lasting virus-specific IgM in humans, and to establish long-term persistence in non-human primates, suggesting that the virus might evade immune defenses to establish chronic infections in man. However, the mechanisms of immune evasion potentially employed by CHIKV remain uncharacterized. We previously described two human monoclonal antibodies that potently neutralize CHIKV infection. In the current report, we have characterized CHIKV mutants that escape antibody-dependent neutralization to identify the CHIKV E2 domain B and fusion loop “groove” as the primary determinants of CHIKV interaction with these antibodies. Furthermore, for the first time, we have also demonstrated direct CHIKV cell-to-cell transmission, as a mechanism that involves the E2 domain A and that is associated with viral resistance to antibody-dependent neutralization. Identification of CHIKV sub-domains that are associated with human protective immunity, will pave the way for the development of CHIKV-specific sub-domain vaccination strategies. Moreover, the clear demonstration of CHIKV cell-to-cell transmission and its possible role in the establishment of CHIKV persistence, will also inform the development of future anti-viral interventions. These data shed new light on CHIKV-host interactions that will help to combat human CHIKV infection and inform future studies of CHIKV pathogenesis
Cardiopulmonary assessment of patients with systemic sclerosis for hematopoietic stem cell transplantation: recommendations from the European Society for Blood and Marrow Transplantation Autoimmune Diseases Working Party and collaborating partners.
Systemic sclerosis (SSc) is a rare disabling autoimmune disease with a similar mortality to many cancers. Two randomized controlled trials of autologous hematopoietic stem cell transplantation (AHSCT) for SSc have shown significant improvement in organ function, quality of life and long-term survival compared to standard therapy. However, transplant-related mortality (TRM) ranged from 3-10% in patients undergoing HSCT. In SSc, the main cause of non-transplant and TRM is cardiac related. We therefore updated the previously published guidelines for cardiac evaluation, which should be performed in dedicated centers with expertize in HSCT for SSc. The current recommendations are based on pre-transplant cardiopulmonary evaluations combining pulmonary function tests, echocardiography, cardiac magnetic resonance imaging and invasive hemodynamic testing, initiated at Northwestern University (Chicago) and subsequently discussed and endorsed within the EBMT ADWP in 2016
Recommended from our members
Home country supportiveness/unfavorableness and outward foreign direct investment from China
What drives the outward foreign direct investments (OFDIs) by emerging market firms (EMFs)? Drawing on a strategy tripod framework, this article proposes a theoretical model to predict OFDI by EMFs from China. Specifically, we use institution- and industry-based views to examine two facets of home country environment, namely the supportiveness from home government and unfavorableness from home industry, as important determinants of OFDI, and compare the relative strength of these effects. Further, we use resource-based view to argue that the effect of the home country environment is contingent on the international experience portfolios of EMFs
SPARC promoter hypermethylation in colorectal cancers can be reversed by 5-Aza-2′deoxycytidine to increase SPARC expression and improve therapy response
Poor clinical outcomes in cancer can often be attributed to inadequate response to chemotherapy. Strategies to overcome either primary or acquired chemoresistance may ultimately impact on patients' survival favourably. We previously showed that lower levels of SPARC were associated with therapy-refractory colorectal cancers (CRC), and that upregulating its expression enhances chemo-sensitivity resulting in greater tumour regression in vivo. Here, we examined aberrant hypermethylation of the SPARC promoter as a potential mechanism for repressing SPARC in CRCs and whether restoration of its expression with a demethylating agent 5-Aza-2′deoxycytidine (5-Aza) could enhance chemosensitivity. Initially, the methylation status of the SPARC promoter from primary human CRCs were assessed following isolation of genomic DNA from laser capture microdissected specimens by direct DNA sequencing. MIP101, RKO, HCT 116, and HT-29 CRC cell lines were also used to evaluate the effect of 5-Aza on: SPARC promoter methylation, SPARC expression, the interaction between DNMT1 and the SPARC promoter (ChIP assay), cell viability, apoptosis, and cell proliferation. Our results revealed global hypermethylation of the SPARC promoter in CRCs, and identified specific CpG sites that were consistently methylated in CRCs but not in normal colon. We also demonstrate that SPARC repression in CRC cell lines could be reversed following exposure to 5-Aza, which resulted in increased SPARC expression, leading to a significant reduction in cell viability (by an additional 39% in RKO cells) and greater apoptosis (an additional 18% in RKO cells), when combined with 5-FU in vitro (in comparison to 5-FU alone). Our exciting findings suggest potential diagnostic markers of CRCs based on specific methylated CpG sites. Moreover, the results reveal the therapeutic utility of employing demethylating agents to improve response through augmentation of SPARC expression
Developing international business relationships in a Russian context
The collapse of the former Soviet Union has opened up a wealth of business opportunities for companies seeking new markets in the Russian Federation. Despite this, firms intending to do business in Russia have found themselves hampered by cultural differences in business practices and expectations. As Russia integrates into the global economy, understanding such practices and the managerial mindset of business people is crucial for managers who hope to navigate Russia's complex markets. This study draws on the trust literature and adopts quantitative tools to deconstruct the Russian 'Sviazi' system of social capital business networking. We develop a model isolating three dimensions of Sviazi: one an affective or emotional component; the second, a conative component; and the third, a cognitive component. The model provides a useful guide for helping foreign firms to succeed in Russia, while also serving as a basis for further research in the field.
Keywords
- …