6,388 research outputs found
Synthesis of H<sub>x</sub>Li<sub>1-x</sub>LaTiO<sub>4</sub> from quantitative solid-state reactions at room temperature
The layered perovskite HLaTiO4 reacts stoichiometrically with LiOH·H2O at room temperature to give targeted compositions in the series HxLi1-xLaTiO4. Remarkably, the Li+ and H+ ions are quantitatively exchanged in the solid state and this allows stoichiometric control of ion exchange for the first time in this important series of compounds
Molecular Dynamics Computer Simulation of the Dynamics of Supercooled Silica
We present the results of a large scale computer simulation of supercooled
silica. We find that at high temperatures the diffusion constants show a
non-Arrhenius temperature dependence whereas at low temperature this dependence
is also compatible with an Arrhenius law. We demonstrate that at low
temperatures the intermediate scattering function shows a two-step relaxation
behavior and that it obeys the time temperature superposition principle. We
also discuss the wave-vector dependence of the nonergodicity parameter and the
time and temperature dependence of the non-Gaussian parameter.Comment: 5 pages, Latex, 6 postscript figure
Is the Convergence of Accounting Standards Good for Stock Markets?
This paper examines the impact of the convergence of Hong Kong Accounting Standard 40 (HKAS 40) with the International Financial Reporting Standard (IFRS) on the stock prices of firms in the property industry. Using a sample of 22111 firm-day observations, we show that the new standard has a negative impact on the stock performance of these firms.Hong Kong Accounting Standard 40, Event Window, Stock Return.
Josephson Current between Triplet and Singlet Superconductors
The Josephson effect between triplet and singlet superconductors is studied.
Josephson current can flow between triplet and singlet superconductors due to
the spin-orbit coupling in the spin-triplet superconductor but it is finite
only when triplet superconductor has , where and
are the perpendicular components of orbital angular momentum and spin angular
momentum of the triplet Cooper pairs, respectively. The recently observed
temperature and orientational dependence of the critical current through a
Josephson junction between UPt and Nb is investigated by considering a
non-unitary triplet state.Comment: 4 pages, no figure
SafeWeb: A Middleware for Securing Ruby-Based Web Applications
Web applications in many domains such as healthcare and finance must process sensitive data, while complying with legal policies regarding the release of different classes of data to different parties. Currently, software bugs may lead to irreversible disclosure of confidential data in multi-tier web applications. An open challenge is how developers can guarantee these web applications only ever release sensitive data to authorised users without costly, recurring security audits.
Our solution is to provide a trusted middleware that acts as a “safety net” to event-based enterprise web applications by preventing harmful data disclosure before it happens. We describe the design and implementation of SafeWeb, a Ruby-based middleware that associates data with security labels and transparently tracks their propagation at different granularities across a multi-tier web architecture with storage and complex event processing. For efficiency, maintainability and ease-of-use, SafeWeb exploits the dynamic features of the Ruby programming language to achieve label propagation and data flow enforcement. We evaluate SafeWeb by reporting our experience of implementing a web-based cancer treatment application and deploying it as part of the UK National Health Service (NHS)
Energy Resolved Supercurrent between two superconductors
In this paper I study the energy resolved supercurrent of a junction
consisting of a dirty normal metal between two superconductors. I also consider
a cross geometry with two additional arms connecting the above mentioned
junction with two normal reservoirs at equal and opposite voltages. The
dependence of the supercurrent between the two superconductors on the applied
voltages is studied.Comment: revtex, 7 pages, 8 figures. accepted by Phys. Rev.
Pinhole calculations of the Josephson effect in 3He-B
We study theoretically the dc Josephson effect between two volumes of
superfluid 3He-B. We first discuss how the calculation of the current-phase
relationships is divided into a mesoscopic and a macroscopic problem. We then
analyze mass and spin currents and the symmetry of weak links. In quantitative
calculations the weak link is assumed to be a pinhole, whose size is small in
comparison to the coherence length. We derive a quasiclassical expression for
the coupling energy of a pinhole, allowing also for scattering in the hole.
Using a selfconsistent order parameter near a wall, we calculate the
current-phase relationships in several cases. In the isotextural case, the
current-phase relations are plotted assuming a constant spin-orbit texture. In
the opposite anisotextural case the texture changes as a function of the phase
difference. For that we have to consider the stiffness of the macroscopic
texture, and we also calculate some surface interaction parameters. We analyze
the experiments by Marchenkov et al. We find that the observed pi states and
bistability hardly can be explained with the isotextural pinhole model, but a
good quantitative agreement is achieved with the anisotextural model.Comment: 20 pages, 21 figures, revtex
Deformation of Quantum Dots in the Coulomb Blockade Regime
We extend the theory of Coulomb blockade oscillations to quantum dots which
are deformed by the confining potential. We show that shape deformations can
generate sequences of conductance resonances which carry the same internal
wavefunction. This fact may cause strong correlations of neighboring
conductance peaks. We demonstrate the relevance of our results for the
interpretation of recent experiments on semiconductor quantum dots.Comment: 4 pages, Revtex, 4 postscript figure
Magnetic Field Effect on the Supercurrent of an SNS junction
In this paper we study the effect of a Zeeman field on the supercurrent of a
mesoscopic SNS junction. It is shown that the supercurrent suppression is due
to a redistribution of current-carrying states in energy space. A dramatic
consequence is that (part of the) the suppressed supercurrent can be recovered
with a suitable non-equilibrium distribution of quasiparticles.Comment: 4 figures in postscrip
Combined effect of brain-derived neurotrophic factor and LINGO-1 fusion protein on long-term survival of retinal ganglion cells in chronic glaucoma
Glaucoma is a progressive neuropathy characterized by loss of vision as a result of retinal ganglion cell (RGC) death. There are no effective neuroprotectants to treat this disorder. Brain-derived neurotrophic factor (BDNF) is well known to transiently delay RGC death in ocular hypertensive eyes. The CNS-specific leucine-rich repeat protein LINGO-1 contributes to the negative regulation to some trophic pathways. We thereby examined whether BDNF combined with LINGO-1 antagonists can promote long-term RGC survival after ocular hypertension. In this study, intraocular pressure was elevated in adult rats using an argon laser to photocoagulate the episcleral and limbal veins. BDNF alone shows slight neuroprotection to RGCs after a long-term progress of 4 weeks following the induction of ocular hypertension. However, combination of BDNF and LINGO-1-Fc prevents RGC death in the same condition. We further identified that (1) LINGO-1 was co-expressed with BDNF receptor, TrkB in the RGCs, and (2) BDNF combined with LINGO-1-Fc activated more TrkB in the injured retina compared to BDNF alone. These results indicate that the combination of BDNF with LINGO-1 antagonist can provide long-term protection for RGCs in a chronic ocular hypertension model. TrkB may be the predominant mediator of this neuroprotection. © 2009 IBRO.postprin
- …