4 research outputs found

    Modulational stability of periodic solutions of the Kuramoto-Sivaskinsky equation

    Get PDF
    We study the long-wave, modulational, stability of steady periodic solutions of the Kuramoto-Sivashinsky equation. The analysis is fully nonlinear at first, and can in principle be carried out to all orders in the small parameter, which is the ratio of the spatial period to a characteristic length of the envelope perturbations. In the linearized regime, we recover a high-order version of the results of Frisch, She, and Thual, which shows that the periodic waves are much more stable than previously expected

    Nonlinear stability of oscillatory core-annular flow: A generalized Kuramoto-Sivashinsky equation with time periodic coefficients

    Get PDF
    In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient

    Computational study of chaotic and ordered solutions of the Kuramoto-Sivashinsky equation

    Get PDF
    We report the results of extensive numerical experiments on the Kuramoto-Sivashinsky equation in the strongly chaotic regime as the viscosity parameter is decreased and increasingly more linearly unstable modes enter the dynamics. General initial conditions are used and evolving states do not assume odd-parity. A large numberofnumerical experiments are employed in order to obtain quantitative characteristics of the dynamics. We report on di erent routes to chaos and provide numerical evidence and construction of strange attractors with self-similar characteristics. As the \viscosity " parameter decreases the dynamics becomes increasingly more complicated and chaotic. In particular it is found that regular behavior in the form of steady state or steady state traveling waves is supported amidst the time-dependent and irregular motions. We show that multimodal steady states emerge and are supported on decreasing windows in parameter space. In addition we invoke a self-similarity property of the equation, to show that these pro les are obtainable from global xed point attractors of the Kuramoto-Sivashinsky equation at much larger values of the viscosity
    corecore