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ICASE Fluid Mechanics

Due to increasing research being conducted at ICASE in the field of fluid mechanics,

future ICASE reports in this area of research will be printed with a green cover. Applied

and numerical mathematics reports will have the familiar blue cover, while computer science

reports will have yellow covers. In all other aspects the reports will remain the same; in

particular, they will continue to be submitted to the appropriate journals or conferences for

formal publication.
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Nonlinear stability of oscillatory core-annular flow: A generalized

Kuramoto-Sivashinsky equation with time periodic coefficients.

Adrian V. Coward * Demetrios T. Papageorgiou t Yiorgos S. Smyrlis _

Abstract

In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined

when the acting pressure gradient is modulated by time harmonic oscillations and viscosity
stratification and interfacial tension is present. An exact solution of the Navier-Stokes equa-

tions is used as the background state to develop an asymptotic theory valid for thin annular
layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of

the interface. The evolution equation is an extension of the equation found for constant pressure

gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by

Papageorgiou, Maldarelli & l{umschitzki, Phys. • Fluids A 2(3), 1990, pp.340-352, to a similar

system with time periodic coefficients. The distinct regimes of slow and moderate flow are con-
sidered and the corresponding evolution is derived. Certain solutions are described analytically

in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Exten-
sive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate

the effect of the oscillatory pressure gradient on the solutions in the presence of a constant

pressure gradient.
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1 Introduction

Core annular flows (CAFs) are immiscible two-fluid flows in a cylindrical tube in which one fluid

moves through the tube core and the other liquid occupies the annular region surrounding the core.

If a constant pressure gradient causes the flow, an exact solution of the Navier-Stokes equations

is available with the interface between the two fluids being perfectly cylindrical. A considerable

amount of research has been applied in an effort to characterize the instability of such perfect CAF

arrangements. There are many technological applications where the CAF serves as a useful model

for the dynamics, such as, lubricated pipelining, concurrent flows in packed beds, coating processes,

and liquid-liquid displacements in the presence of a wall-wetting layer in porous media, to mention a

few. The important theoretical question lies in the prediction of whether the core-annular geometry

will be realized or whether the flow will break up into a slug or emulsion flow.

Experimental and theoretical studies indicate that the main physical parameters that affect

the stability are capillary forces, viscosity differences and density differences between the phases.

The effect of viscosity differences was first studied by Yih (1967) for the stability of two-phase

plane Couette-Poiseuille flow; he derived analytical expressions for the growth-rates of linear per-

turbations in the long-wave limit (i.e. disturbances with wavelengths which are much larger than

the plate separation distance) from which the following conclusions are inferred: If the two fluids

have different viscosities an instability is possible at any value of the Reynolds number, however

small (the instability is not associated with high Reynolds numbers alone). The flow is stable (for

long waves at least) if the less viscous fluid occupies the thinner of the two layers and unstable

for converse arrangements. Hooper (1985) and Hooper _ Boyd (1983) generalized Yih's results for

semi-infinite and infinite two-phase Couette flows which are useful models in studying short-wave

instabilities. Renardy (1985) addressed the problem numerically and shows that in planar Couette
flow short and intermediate waves can become unstable in parameter regimes where the long wave

analysis predicts stability.

In cylindrical geometries the situation is different in that surface tension acts to destabilize

interracial waves longer than the core diameter even in the absence of flow (Tomotika (1935),

Goren (1962)). For flow in a core-annular arrangement, Hickox (1971) analyzed long wavelength

perturbations and found instability whenever the annular fluid is more viscous than the core fluid.

More complete linear stability analyses have been carried out in a series of articles by Joseph,

Renardy &: Renardy (1984), Preziosi, Chen _ Joseph (1989), Hu _z Joseph (1989), Hu, Lundgren

_: Joseph (1990), Chen, Bai _ Joseph (1990), Bai, Chen _ Joseph (1992), Chen & Joseph (1991) &

Chen (1992). These authors use numerical and long-wave techniques to produce a detailed picture

of the linear stability to mainly axially symmetric perturbations. The authors find that there are

essentially two competing mechanisms at play: (i) Capillary forces which destabilize long waves

and are, to leading order in the interracial deflection, independent of the basic flow, (ii) Viscosity

differences which provide a jump in the leading order axial velocity perturbation which destabilizes

short waves and can also destabilize long waves when the annular fluid is the more viscous (long

waves are stabilized by these forces if the core fluid is more viscous). The studies detailed above
show that the interaction of these mechanisms can produce a window of linear stability which can

be explained as follows: in situations when the annular fluid thickness is much smaller than the

core radius and its viscosity smaller than that of the core fluid, the viscosity difference mechanism

provided by the axial velocity jump (see above) causes a stabilization of long waves (which would

have been unstable otherwise due to the capillary instability) at sufficiently large Reynolds numbers.

As the Reynolds number increases further the flow becomes unstable to the short wave mechanism.

It is established, therefore, that the flow parameters can be chosen so that the flow is linearly
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stable to perturbations of all wavelengths. For a complete and up to date account of theoretical

and experimental results and their comparisons see the texts by Joseph & Renardy (1993).

The nonlinear stability of CAFs when capillary forces are important, has been considered by

Papageorgiou, Maldarelli &=Rumschitzki (1990) (hereafter refered to as PMR). This was done in

the limit of a thin annular layer by a systematic asymptotic expansion procedure on the Navier-

Stokes equations. In this limit the film dynamics reduce to those given by lubrication theory and

a matching can be achieved analytically between film and core dynamics to produce an evolution

equation for the scaled interracial amplitude y(t, z) where t is time and z axial distance, which can
be written as

_t + _?_?z+ _?_ ÷ _'Z]zzzz + (1 - 1)1:(u) = O, (1)

where 0 < v < 1 is a parameter inversely proportional to the square of the wavelength and m is the

viscosity ratio of core and film fluids. The last term arises due to viscosity differences and is a linear

pseudo-differential operator with a known spectrum (see PMR and also below). The validity of the

lubrication approximation is given by Georgiou, Maldarelli, Papageorgiou & Rumschitzki (1992)

who analyze the linear stability dispersion relation in the limit of a thin annular fluid and identify

the linear terms of (1) exactly to leading order. Further more, it is shown that the lubrication

approximation agrees with the numerically computed eigenvalues for annulus to core radius ratios

(denoted by e) as large as 0.2, a finding which implies that (1) may be a useful approximation for

finite but small e (note that e can easily be re-introduced in (1)).

When m = 1, (1) reduces to the Kuramoto-Sivashinsky equation which has been widely stud-

ied both analytically (see for example Nicolaenko, Scheurer & Temam (1985), Constantin, Foias,

Nicolaenko & Temam (1988)) and computationally (Sivashinsky & Michelson (1980), Hyman

Nicolaenko (1986), Hyman, Nicolaenko & Zaleski (1986), Kevrekidis, Nicolaenko & Scovel (1990),

Papageorgiou & Smyrlis (1990) (referred to as PS), Smyrlis & Papageorgiou (1991) (referred to

as SP) among others.) These studies show that the dynamics exhibits a low-modal behavior and

complexity sets in as _, decreases below unity. PS a_d SP showed numerically the existence of

a period-doubling route to chaos according to the Feigenbaum scenario (see Feigenbaum (1980))

and have computed a Feigenbaum number from their numerical results with a three digit accuracy.

It is noted that such results are reproducible with a fairly low-dimensional representation of the

PDE; the number of modes required to capture the dynamics was found (empirically by extensive
1

numerical experiments) to be a few more than L,-_, the number of linearly unstable 2_r-periodic

waves.

An extension of the analysis of PMP_ to include asymmetric interracial deflections and in par-

ticular the effects of pipe rotation, has been carried out by Coward & Hall (1993). A spatially

two-dimensional version of (1) is derived, analyzed and solved numerically. In the absence of ro-

tation it is found that asymmetric initial conditions lead, after a long time, to axially symmetric

motions. When rotation is present, however, the most unstable linear wave has azimuthal depen-

dence and as a consequence the nonlinear solutions are two-dimensional.

If the annular and core fluids have different viscosities (m _ 1) the following behavior has

been established in PMR for (1) and by Coward and Hall for the higher dimensional equation:

Viscosity differences cause dispersive effects. If I1 - 1/m I exceeds a certain value (which depends

on v), the long-time evolution produces nonlinear traveling waves whose amplitude grows with

the amount of dispersion. In particular this is established for situations where in the absence of

dispersive effects (m = 1) the KS equation produces spatio-temporal chaos. The conclusion is that

dispersion (viscosity differences) can organize chaotic motions into well-defined stable travelling
wave solutions.

2
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The present work extends the research cited above to CAFs which have driving axial pressure

gradients with time periodic modulations. Such flows are easily achieved in practice by using a

pump to drive the flow. Time periodic two-phase flows have received very little attention. The

stability of a single layer of fluid on a flat plate which is performing time periodic oscillations

horizontally has been studied by Yih (1968) using a long wave analysis coupled with a Floquet

theory. Von Kerczek (1987) studied the corresponding problem when the plate is vertical and

performs oscillations along its plane, by solving the Floquet eigenvalue problem numerically for

different wavenumbers. Both investigations indicate that the flow can be stabilized by the periodic

oscillations. Coward _: Papageorgiou (1994) study the stability of two-phase Couette flow when

the upper plate has a horizontal velocity which comprises of a constant component and a time

periodic modulation. The problem is more involved due to the presence of two fluids, and analytical

expressions have been found for the Floquet exponents (growth rates) in the limit of long waves.

The main finding is that the oscillations can completely stabilize otherwise unstable flows, but at

the same time can make unstable flows, in certain parameter regimes, even more unstable.

This article considers the nonlinear stability of an oscillatory CAF. An exact laminar parallel

flow solution of the Navier-Stokes equations can be found for an annulus of arbitrary thickness

which bounds the core with a perfectly cylindrical interface. This time-periodic flow is used as

the undisturbed state in the development of an asymptotic theory using e as the small parameter

in order to develop a nonlinear evolution equation for the interracial deflections which takes into

account the effects of both capillary forces and the background harmonic fluctuations. The scaled

evolution equation, using the notation of (1), which is valid for low frequency modulations, takes
the form

Yt q- (1 -b A cos(flt))_p/z + _/zz Jr _'_zz_ + (1 - 1)_(u) = 0, (2)

where A is the nondimensional amplitude of the background pressure gradient modulations and

their scaled frequency. This equation is studied analytically and computationally in order to

characterize the effect of the background modulations on the dynamics.

The paper is organized as follows. In Section 2 we formulate the problem, write down the

unperturbed time periodic flow and gNe the exact nonlinear equations of motion along with the

interracial conditions. In Section 3 an asymptotic analysis of these equations is carried out in the

limit e --_ 0 and two canonical regimes are analyzed to produce equations of the form (2) with

different pseudo-differential operators which correspond to slow flow with moderate surface tension

and moderate flow with large surface tension, respectively. In Section 4 the equations are analyzed

near the point u = 1 which corresponds to the minimum wavelength which first becomes unstable

(the first bifurcation). A multiple scales analysis is employed to describe the solution and the

analytical results are compared to numerical solutions with good agreement. Section 5 is devoted

to extensive numerical experiments of (2) for values of _, < 1 where more than just two or three

modes are relevent. We address questions such as the effect of the background oscillations on (i)

steady states of KS, (ii) time periodic states, (iii) chaotic states, (iv) travelling wave solutions,

and (v) travelling nonlinear dispersive states. Section 6 contains the conclusions of this study and

discusses future work.

2 Formulation of the problem

A fixed circular cylinder of constant radius r* = R2 contains two incompressible, immiscible fluids

which occupy concentric core and annular regions. These fluids have a common density p, but

different viscosities #1 and #2, where the subscript corresponds to regions 0 _< r* _< R1 and

R1 _< r* < R2 respectively.



Polarcoordinatesareusedsothat r* = 0 is aligned parallel to the z axis and an unsteady axial

pressure gradient

V-P-* = -(F + Acos(wt*))_,

is applied to both fluids. In the analysis that follows gravity is neglected if the pipe is horizontal

and can be included quite easily in vertical arrangements (see [[SI], and [[1]]).

The undisturbed state is a parallel time dependent flow of the form _1,2 (r*, t*) = (0, 0, W_l,2(t, r))

and is governed by following form of the Navier-Stokes equations in the core and annular layers

respectively

1

P 0t* _ F + a cos(_t*)+ _, \ 0_._ + _. 0_*]'
1

p°_ot. - r + a cos(_t*)+ .5 \ 0_._ + _. 0_*]

The annular fluid satisfies a no-slip velocity condition at the cylinder wall and the core velocity

must remain finite at the axis of the cylinder. The interface conditions dictate that velocity and

tangential stress be continuous, so that

w;_(_*=RI) = W_(_*= R1),
0_ 0_

,,-gV-. (_*= R,) = g_-gV-r.(r*= al).

The surface tension cr between the fluids induces a jump in the normal stress at the interface,

(7 ?..
= _ + R-i-l' at = R1.

These equations and boundary conditions admit the following solutions

+ + _ [AIo (fl, r*) - 11exp (iwt*) (3)
: 4.1 4/z2 _

W-_2 = 4#2 +,{_[BIo(fl2r*)+CKo(fl2r*)-l]exp(iwt*)}. (4,

1 1

where fl, = (1 + i)(wp/2#l) _ and f12 = (1 +i)(wp/2#2) _, In and Kn are nth order modified
Bessel functions and _ denotes the real part of a complex number. The three constants A, B, C in

(3) and (4) are given by the solution of

AIo(_R_) = BIo (fl2R1) + CKo (fl2R1),
1_. 1_

#_AI1 (fllR1) = #3 [BI1 (fl2R1) - Cgl (fl2R1)],

1 = BIo(fl2R2)+Cgo(fl2R2),

and

A
1

= #_ [[1 (/32R1)K0 (/_2R1) + K, (fl2R1)Io (132R,)]

x #211(_2R1)Io(f11R1) #]Io(fl2R1)/l(fllR1) Ko(fl2R2)

4
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_u_I0 (ill R1 ) K1 (f12R1 ) 1 ] }1+ #_Ko(f2R1)I1 (fiR1) Io(f2R2) ,

]+ #_K0 (f2R1) [1 (fiR1)

(5)

following non-dimensional parameters:

R2 #2 f/_ wR1
a -- RI' m=_l' W0'

1

R_ WoRlp A - f = (1 + i)
: #1 ' PW3 '

The non-dimensional groups above represent the thickness of the undisturbed annular fluid, the

viscosity ratio between film and core fluids, the non-dimensional frequency of the backgound oscilla-

tory pressure gradient, a Reynolds number based on core variables, a non-dimensional amplitude of

the backgound forcing and the Stokes layer thickness (proportional to 18]-½. The non-dimensional

form of the exact solution is

Wl (r,t) = 1- a2 + ra_ l + _ [dlo(fir) - l]e (mr) , (8)

a 2 _ r 2

W2(r,t) - a2+m_l+_{_-_e [BIo(-_)+CKo(_)-lle(mt)}. (9)

In the expressions (8) and (9) the constants A, B, C are the non-dimensional versions of (5), (6)

and (7) and are obtained by the replacements #1 _ 1, #2 _ m, fllR1 _ fl and fl2R1 _ flv/-rna and

fl2R1 _ vr-mfl. Note also that when A = 0 the steady problem is recovered as expected.

Consider next a general unsteady axisymmetric CAF so that the velocity in regions j = 1, 2

is given by (U,V,W)j(r,z,t) with the interface positioned at r = S(z,t).

equations in the core are

OU1 _ WlOqU1 oqP1 1 (02U1 I OU1 02Ul gl) (10)ot + u1 + oz + or Re \-_r_ + -;-_j + 0_ -_ '

OWl u_OW1 OWl OF1 1 (O_W1 10w1 O_W_
--Or -[- --_r -[" Wl-_z -[- Or - Re \-_-r 2 + -- +rOr -_-z 2 ] ' (11)

The Navier-Stokes

1 ]X #_II(fl2R1)IO(flR1)-#_Io(fl2R1)h(fllR1) Ko(fl2R2)

"Jr #_2Io(flal)Kl(f2R1)nU#_lKo(f2R1)el(flR1) 10 (f2R2) , (6)

]C -- #g/1 (fl2R1) Io (fiR1) - #_Io (f2R1)/1 (fiR1)

]X #2/1 (f2R1) I0 (fiR1) -- #_I0 (f2R1)/1 (fiR1) Ko (f2R2)

] }1+ #glo(flR1)K](fl2R1)+#_Ko(f2R1)h(fllR1) I0 (f2R2) • (7)

We now non-dimensionalize fluid velocities by W0, the basic steady flow evaluated at the axis of

the core (see (3))

g [R12 (.2 _ .1) __ R22.1] "
W0- 4#1#2

The length, time and pressure scalings are R1, R1Wo 1, and pW 2 respectively, and we define the
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and in the annular region

ou2 u OV_ w Og_ oP_
0--[-+ Or + Oz + Or m (02U2 10U2 02U2 U2) (12)r Or Oz2 -_ '

/

m (02W2 lOW2 02W2_ (13)
R_ \--b_r_+ ; O--;-+--5_-z_) "

The equation of continuity in the core and annulus reads

1 o(ruj) + OWj = 0, j = 1,2. (14)
r Or Oz

The velocity (U2,V2,W2) satisfies no-slip at the cylinder wall and (U1,1/1,1411) must remain finite

at the axis of the core. Using the notation

[(.)]_ = ('), - ('h,

{R_ j=lRej = R_m -1 j = 2 '

the continuity of radial velocities, axial velocities, tangential and normal stresses at the interface

are

[vj]l_= 0,
[wj]_= 0,

[1 (ou¢ owj_( (os_ 2 (ou; owj_os]'-R-_j\ Oz + Or] 1- \-57z) ) +-_ t Or b-;z)b-Tzl_=°'

[ 2ouj ( 2owj_(os_ _ 2 (ouj ows_os] _PJ R_j Or + Pj R_j Oz ) t Oz] + _ k oz +-57-r) _ _+
1

R_ \Oz 2 S 1+ \az) ] 1+ \Oz) ] = 0, (15)

where J = (rpR1/# 2 is the non-dimensional surface tension parameter. The system is closed by

imposition of a kinematic condition stating that the interface is a material surface,

OS OS
Uj= -_+ Wj_ z at r= S(z,t). (16)

3 The thin film limit

The full nonlinear problem (10), (11), (12), (13), (15) and (16) presents a formidable analytical

and computational task even under the reasonable assumption that the flow is axisymmetric. Con-

siderable progress can be made, however, in situations when the annulus is thin compared with the

core and when capillary instability is important (see Introduction for the physical significance of

such limits.) We proceed, then, by formulating the stability problem for oscillatory core-annular

flow where the annular layer is thin, referring to this layer as the film. In this regime a = 1 + e with

e _ 1 so that the film has thickness O (e) and we introduce a strained local coordinate y given by

r = 1 + e(1 - y). . (17)
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The flow described by (10)-(16) is now regarded as a perturbation to the basic state (Uc,], Pc,l),

where the subscripts c and f denote the core and film regions respectively. The unknown interface

position is written as r = S (z,t) = 1 + _7/(z,t), with _ << e (in the absence of a shear flow

can be as large as O(e) and the analysis presented below is still applicable) and to be determined

by the main asymptotic balances (see below). The velocity perturbation in each layer is denoted

by (U,V,W)cj and surface tension induces a jump in pressure P_,] across the interface. The

equation of normal stress indicates that this jump is of relative magnitude J_R[ 2. The core and

film dynamics are coupled by a balance of tangential stresses across the interface, and the relative

asymptotic sizes of perturbed quantities in each layer then follow by balancing appropriate terms

(see PMR also). It has been shown in PMR, and is also true for the present problem, that capillary

forces affect the dynamics to leading order in the perturbation as long as the non-dimensional film

depth, e, the surface tension group J, and the core speed characterized by the Reynolds number

Re, satisfy the constraint eJ ,,_ R_. This is achieved by considering either of the following cases

A: slow core flow with moderate surface tension, Re "_ e and J ,-_ 1;

B: moderate core flow with large surface tension, R_ ,_ 1 and J _ e -1.

To facilitate the balance of terms, a Taylor expansion about the unperturbed position r = 1 is

used to describe the interface conditions. For example the undisturbed film velocity at the interface

WI(S(z, t)) may be written as the sum of the steady and unsteady parts

w (r,t) = (r)+ (r,t),

W_S) (1 + _) -- + m2 +0 \E 3] +O(e(_),m m m

(_///_I1 (_)_ (EI1
W_ _) (1 + _r/,t) = _ {[_YflI1 (fl) fl (1+ (fl)

))_ 7 a

iA exp (iat)}+ o h-k-:

and the kinematic condition (16)becomes

It follows by leading order balances (see PMR for further details) that

U] ,,_ e2_, _ ,,_ e2, r ,,_ _t,

(18)

where r is the long time scale for the temporal instability. The oscillatory unsteady flow is of

the form exp (i_t), and in the analysis that follows we consider low frequency oscillations so that

_t ,,_ 1 with _ = e2_0 . Noting that

1

fl = (l+i)e(_2Re) _

( ),Io(fl) = 1+ 4 +0 R_e 4

/l(fl) = (l+i)e 1+ 8 +0 R2e¢4
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we transform the coordinate system to one which oscillates and moves down the core with speed

2em -1 + 0 (e2), by introducing the transformation

z--_z- + +o _z t- (1+_)+o _z sin(at) (19)
Trt ?Tt,2 _ "

With respect to this oscillating frame of reference the leading order kinematic condition reduces to

07 + _--_cos(a07) _.

An evolution equation for _(z, t) follows from (20) once 9 f is expressed in terms of _/. This is

achivable by matching with the core dynamics as described next.

3.1 Slow flow, moderate surface tension

Consider first the case when Re

become

,,_ e and J N 1. The perturbation velocities in the film and core

uj = us = _4us0+.-., (21a)

•W] = W]+W/=W 1+e3W/o+..., (21b)

P/ = P/ + P] =-fi] + eP/o +..., (21c)

.t

ii _ /,

and R_

(17) yields the following leading order solutions in the film,

ve = _c = _Veo+..., (22a)
We = W_ + Wc = We + e2Weo +..., (22b)

Pc = -fie + ['_ = -fie + eRgo +..., (22c)

= At and A = 0 (1). Substitution of (21a-c) into (12)-(14) along with the local film scaling

P_o = P_o(z,7), (23)

W/o - m_ [Y_ O(P]°)+yA(z'7)]Oz , (24)

Uso - A 05 (Pso) + (25)
m OZ----5-- -2-_z "

The solution in the core is found in Fourier

tangential stress to determine the function

space and couples with the film through the balance in

A (z, r).

OWlo OVeo OWeo
-m--_y (1) - Oz (1)+_(1). (26)

Substitution of (22a-c) into (10), (11) and (14) gives the following leading order core problem

Ueo $ OPco (27a)
V2Ue0--r2 - Or '

V2We ° = _OPeo (275)
Oz

o(_Veo) + OW_o _ o. (27c)
Or Oz
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which is to be solved subject to the continuity of velocity conditions

Uc0(r=l) = 0,

Wco(r=i) = 27(-_).

Defining a streamfunction ¢ in the usual way,//co 1 0¢ Woo 1 o__¢_the system (27a-c) yields= --_'"8-_'z_ = r Or
the familiar Stokes operator for ¢,

_-rr2 r Or + ¢ = 0,

with solution readily obtainable in Fourier space in terms of modified Bessel functions

= /_>o ¢(r,z) e-ikzdz,
O0

= -rio(k)F(k)_I1 (kr) + r211 (k) F(k)_Io(kr), (28)

2(m- 1)
r(k) = m [kI_(k)- kIo_(k) + 2Io(k)I, (k)]"

The leading order radial velocity perturbation in the film is then evaluated at y = 1 and on

elimination of A(z,t) from (23)-(25), (26) and (28) can be written in the form

(1)Uf°(1)=-2ira 1- N(k)rl+-_--mk Rio, (29)

where the the kernel N (k) is given by

k2I,_(k)
N (k) = [kI_(k)- kI_(k)+ 2kIo(k)I1(k)]" (30)

/,From the kinematic condition (18) and continuity of normal stresses (15) respectively, we have

07
7_, (31)Uzo(y= l) _ 07 (2 A )Or + _mmcos (_or)

P/o = V 7+ _-z2],

and substituting (29) into (31) yields the desired evolution equation

07 A COS (___oT)) 07 g _027 047_

1)f+oof+ooN(k)7(;,,-)exp ,tk
_rm 2 J-co J-oo

+

= o. (32)

It should be noted that (32) is a long-wave equation since it has been derived by assuming that

the radial lengthscales in the film are much smaller than the axial ones. The validity of this

assumption is checked a posteriori by studying the solutions of (32) and showing that no infinite

slope singularities will arise. This has been proven for the KS equation analytically (see Introduction

for references) and we provide evidence that this is also true for (32) from our extensive numerical

work (see later).



<.

3.2 Moderate flow, large surface tension

The analysis presented in the previous Section applies also, with minor modifications when R_ ,-_ 1

and J _ !. For brevity we present the essential differences and refer the reader to PMR for a
£

complete derivation. The dynamics in the film as well as the asymptotic solution there has the

same form as above. Coupling between film and core is still achieved through the tangential stress

balance and the normal stress balnace yields a pressure jump as before. The main difference is in the

core dynamics: Since the Reynolds number is O(1) now, the equations governing the perturbation

there are the linearized steady Navier-Stokes equations (see PMR). The perturbation equations

apear steady by virtue of the time-scale of the evolution. In particular, the core variables expand

as

Uc = e2Uo +..., (33a)

We = We + e2Wo +..., (33b)

pc = p---_+ e2po + .... (33c)

The time-scale transforms according to the change of reference frame given by (19) and substitu-

tion of this along with (33a-c) into the core Navier-Stokes equations (10)-(11) together with the

intrduction of the streamfunction ¢ defined in Section 3.1, yields

1
(l_r2)0_(D¢)_ R D2qd, (34)

r Or + _ " (35)

Solution of (34) is achieved by taking the fourier transform in z and the final evolution equation is

obtained after satisfaction of all the boundary conditions (see PMR also). The result is

0_/ (2+ A cos(_tor))_ 0_/ + J (02_/ + 04_/_ _

1)I_+;I_+22-_m N (k)_l(zi,r)exp(ik(z- zl))dz, dk = 0. (36)

The kernel N(k) appearing above is expressible in terms of the confluent hypergeometric function

and two auxiliary integrals given below,

II(k)e-_M(A,2,2A)

N(k) = Nl(k)Io(k)- N2(k)Ii(k)'

Nl(k) = (Ii(k)Kl(ks) - II(ks)Kl(k))s2e-_S2 M(A,2,2As2)ds,

£N (k) = + h(ks)go(k))s e - s M(A,2,2As )ds,

(37)

1 1 i_r k 2
whereA=_(kR_)_e 4 andA=l+s_ while M is the regular solution of the equation

2'

(2- f)G'- AG = 0,
(38)

with primes denoting f-derivatives. Note that in order to solve (36) the kernel N(k) need only be

computed once, given a value of v. This was done, in the absence of background fluctuations, by

10
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PMtt where it is shown numerically that the effect of the kernel (physically this is the viscosity

stratification mechanism) is to organize the evolution into travelling waves for a wide range of

parameters.

4 Analysis of the evolution equations

The time evolution of the interface position _?is described by equations (32) and (36). The following

change of variables yields the canonical equation (39) given below

3mAt1 v½ J 1 _r2 i l

r- j_ , Y- 6A u, z = v-_x, v = -_, k= v_k ,

where L is the unscaled wavelength of the interface.

at -_" (1 -_- _1COS(031$))?/_ -]- _X 2 "_ V_ 4 "b i _ ('¢/) = 0, (39)

where

m2A

3mA_0

wl - Jv '

£:(u) - r Jr oo oo (1)N u(xl,t) eik(x-Xl)dxldk.

According to the change of variables above, we choose to construct solutions of equation (39) on

spatially periodic domains; in physical space the limit _ --* 0 corresponds to L --+ oc.

We begin to analyze the nonlinear dynamics of oscillatory CAFs by studying the oscillatory KS

equation (referred to hereafter as the OSCKS equation). This limit corresponds to the nonlocal

term in equation (39) being absent and is relevant if the viscosities of the two fluids are the same

(m = 1) or if the Reynolds number is small for example of order e2 or smaller (for a justification of

the latter limit see [[8]]). The oscillatory KS equation (OSCKS) and the KS equation share the same
linear stability spectrum when linearization is done about u = 0. More importantly fffr u(t, x)dx

is a conserved quantity for both equations along with the fact that the energy equation for the

evolution of f2_ u2dx is the same (this equation is easily obtained by multiplying (39) by u and

integrating). As a result of this it can be concluded that when v > 1 solutions will tend to a

uniform steady state and nontrivial dynamics first enter when _ crosses below unity and linearly

unstable modes are activated.

The main purpose of this Section is to gain an understanding of the dynamics of the OSCKS

equation. Due to the nonlinear nature of the problem we undertake extensive numerical work, but

before presenting such results we consider the limit v --* 1- which can be described analytically.

4.1 Asymptotic solutions of the OSCKS equation for l/ near 1

As mentioned above, when v > 1 there are no linearly unstable modes to pump energy into the

system and if the initial condition has zero mean then the large time evolution yields a trivial steady

state. /,From a normal mode linear stability analysis of the OSCKS equation (equation (39) with

m = 1), it is clear that that the number of linearly unstable modes is rood [_,-½] and by setting

v=l-_], O<E1 << 1,

11
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we are in a position to study the evolution in the neighborhood of the first unstable mode. In

what follows we begin by consideration of solutions with zero mean and odd parity. We note that

for u near 1 (but not necessarily asymptotically close), the KS has a global steady state attractor

which can be cast into an odd-parity zero-mean profile by Galilean transformation and translation

invariance. Using Fourier analysis, then, we can represent zero mean odd-parity solutions by the
infinite sum

OO

u(x,t) = _ ak(t)sin(kx). (40)
k=l

The partial differential equation is dissipative and we expect a low modal behavior as for the KS

equation. In practice this means that a Galerkin approximation can be employed to truncate the

sum in (40) to N terms, with N depending on u and also on 61. /,From previous work on the KS

(see PS and SP) we find that a few modes more than the number of linearly unstable ones provide

a sufficient description of the attractors. In the analysis that follows the asymptotic limit el -+ 0

is described by the two leading modes al and a2. The equations satisfied by al and a2 are

. .. al a2

dal (1 + 51 cos(wit)) -_ elal = 0, (41a)dt

da2d__i_+ (1 + 61 cos(wlt))_ + (12 - 16el)a2 = 0. (41b)

This is a two-dimensional dynamical system and our main concern is with the behavior at large

times which provides, the features of the attractor for this range of values of v. In the context of

the Galerkin approximation the system (41a-b) is exact; its validity hinges on the fact that there

are only two modes of importance, something which can be true if v is near 1 and el is small.

In practice el need notbe asymptotically small for the two-mode truncation to be a reasonable

approximation; this is shown later (see Figure 2) by a computation with el = 0.1 and with 2 modes

or 20 modes respectively with indistinguishable results. The smallness of O can be used, however,

in an analytical description of these solutions and consequently provide an accurate description of

the dynamics.
In order to motivate the multiple scales ansatz to follow, we consider first the solution of (41a-b)

when _1 = 0. If the unsteady terms are dropped the steady states are obtained by solution of two

coupled algebraic equations which yield al = 4x/T_ and a2 = -2el. There does not appear to be

a closed form solution for al and a2 at general times but a multiple scales analysis can be used to

provide the essential features of the dynamics. It can be seen that since al _ _ and a2 '_ el, the

principal time scale is long and of order e_-1. With if1 non-zero (and Wl of order 1 or smaller) the

appropriate expansion is

al(t) = e_/2[A,o(t,,t2,...) + e1A11(t1,t2,.,.) +...], (42a)

a2(t) = el [A2o(tl,t2,...) + e1A21(tl,t2,...) +...], (42b)

where the multiple scales are given by

tl = t, t2 = elt, t3 = e12t, ....

Substitution of (42a, b) into (41a-b) yields the following equations to leading order

OAlo "
-0, (43)

Otl

12
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0All

Otl

0A21 OA2o

or--i-+

--+
69Alo

0t2

OA2o

Otl

(1 + (_1cos(wltl))AloA2o - Alo = 0,

-- + 1(1 + 51cos(wltl))A_o + 12A20= 0,

+ (1 + (_1 cos(wltl))AloAll + 12A21 - 16A2o = 0.

(44)

(45)

(46)

It can be seen from (43) that Alo is independent of tl and it follows from (45) that

( 1 1)A2o = K1 e-12tl - A_o 67cos(wit1) + _7¢dl sin(wltl) + , (47)

where

51

7 = "144 + Wl2"

The value of K1 in (47) is fixed by the initiM conditions and does not affect the large time behavior

of the solutions. With A20 available, then, we turn to (44). Since Alo is independent of tl, solutions

of (44) will become unbounded as tl increases unless a secularity condition is satisfied. This arises

by setting to zero terms in the forcing function which do not involve tl; this is shown explicitly

below by a re-grouping of terms in (44).

Onll 1
Alo [Ke-12tl(1 + 51cos(wit1))- (67 + _4)A2ocos(wltl)

69tl 2

1 2 • 1 2 sin(2wltl)]
-- _1")'A10 Sln(091t1 ) - 3")'t_1 A120 cos(20Jltl ) - _°31'Yt_1A10

l

OAlo
+-_2 + a2A_° - AlO = O,

where

The secularity condition is, then,

0A1-----2-°+ a2A30 - Alo = 0,
Ot2

which gives the following explicit solution for Alo,

K2
A_o - a2 L + e-2t2 ,

where K2 is fixed by the initial conditions. With Alo and A20 known, higher order terms can be

caaculated by direct integration and application of secularity conditions where necessary.

Of particular interest is the comparison between the asymptotic solutions just described and

the numerical solutions of (41a-b) for small el. For large times the leading order solutions are
1

(1 3512 )-2 (48a)Alo "_ _'+ 2(144+w2 ) ,

All "_ 2a31 [_ (67_11+2__151)sin(wltl)+Tcos(wltl)_2 (48b)

37/_1 sin(2wltl) + cos(2w, tl) (49b)
2._1 -8- '

(1 )--1( 1)
35_ 67cos(wit1 ) + 1 .

~ - + + . (40c)

13
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It is seen from (48a-c) that the leading order solution A10 of al is a constant while the next

order correction, namely All, provides an oscillatory component of period 27r/wl. For the Fourier

mode a2 the oscillations are captured at leading order by the asymptotic expression A20 the period

being 2_r/Wl. These analytical results suggest, therefore, that the effect of the oscillatory pressure

gradient in the undisturbed flow is to induce a nonlinear interracial evolution (within the framework

of the present work) which is (i) spatially periodic with wavelength 2_rv -1 with _, slightly less than

unity, and, (ii) which is time-periodic with frequency locked to that of the driving pressure gradient.
Such behavior is also seen in related two-dimensional systems such as the forced Duffing oscillator

for instance (see Chow & Hale (1982) for example). The forcing in the present problem is different

in that it only alters the distribution of energy rather than adding or removing energy from the

system. The evolution of the OSCKS becomes increasingly complicated as v decreases and the

dimension of the attractors increases; in the following Section we carry out extensive numerical

experiments in order to gain an understanding of the attractors for this system.

Before presenting direct numerical simulations of the OSCKS, we provide a comparison be-

tween the multiple scales asymptotic theory and the numerical solution of (41a-b). The important

parameter is E1 and numerical results with different values of wl and 61 are qualitatively similar;

in what follows, therefore, we fix the values wl = 1 and _fl = 0.5 and carry out an evaluation of

the asymptotic theory for a range of el. Equations (41a-b) were integrated numerically by spec-

ifying initial conditions al = 1, a2 = 0 at time t= 0 and solving to large enough times so that

any transient behavior disappears. The Fourier component al is compared with the corresponding
1_ 3--

two-term asymptotic solution e_ A10 + e_ All, while the second Fourier component a2 is compared

with its corresponding one-term asymptotic solution el A20. Numerical solutions are given in Figure

1 for values of el = 0.1 and el = 0,01. The agreement is seen to be very good with additional

improvement as el decreases. By analyzing the phase plane of the energy, we have verified that

the solutions are indeed periodic and frequency-locked to the background flow oscillations, with a

period of 27r for both cases. The fact that the two-mode truncation is a very good approximation to

the solution is illustrated in Figure 2. A numerical solution has been obtained using 20 modes (see

the next section for details) and a comparison is made between the Fourier coefficients al and a2 as

well as the corresponding asymptotic expressions. The dotted lines correspond to the asymptotic

results and it is seen that the 2 mode and 20 mode truncations produce almost identical results.

5 Numerical experiments on the OSCKS

The solution of the full nonlinear evolution equation (39) for general values of y, _1 and wl must

in general be obtained numerically. The method we apply here is i_n adaptation of the scheme

developed by PS and SP for the solution of the KS equation, which is obtainable from (39) when

m= land61=0.

5.1 Numerical methods

The following Galerkin approximation is used to approximate solutions with zero mean

N

u(t,x) = _ (ak(t)sin(kx) + bk(t)cos(kx)). (50)
k--1

When m _ 1 the solution contains both sines and cosines whereas when m = 1 the symmetry of

(39) allows odd-parity solutions for which bk = 0 in (50). Such odd:parity solutions would evolve

from odd-parity initial data for instance; general initial conditions, however, require both sines and

14
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cosines and so there are twice as many unknowns then. Briefly, then, when (50) is substituted into

(39) and coefficients of the different harmonics are set to zero, a nonlinear system of 2N (or N)

coupled first order differential equations are obtained for the evolution of the fourier coefficients

(see PS). These equations when written as a first order system, contain a nonlinear coupling term

and a linear term resulting from the fourier projection of the linear spatial operators in (39). A

split-step scheme is implemented with the linear part (which contains all the stiffness at large N and

the dispersive effects due to the pseudo-differential operator) integrated exactly and the nonlinear

part with a fourth order variable step Runge-Kutta method. Accuracy tests are applied at each

time-step. For particular experiments the number N is chosen large enough so that the minimum

amplitude of any of the fourier components is below a tolerance level (this tolerance is usually set

to < 10-s). The linear dispersive term also imposes a restriction on the time-step as we explain
next with the model ut -t- u_ = 0: The solution of the kth fourier coefficient after a time-step

3
At is proportional to exp(ik3At); the exponential is evaluated accurately, then, if km_At << 1. In

practice we allowed the upper bound to be about 0.1 - 0.3 without loss of accuracy. All numerical

experiments described below and which contain high frequency oscillations superimposed onto the

lower frequency background flow have been confirmed by convergence studies in both N as well as

the time-step.

In the presence of periodic forcing (61 7t 0) solutions of equation (39) display a variety of

interesting behavior as v decreases below 1. For various values of Wl and _fl we have characterized

the effect of tile oscillations on a number of attractors. In Table 1 we provide some representative

behavior for odd-parity solutions generated by the initial condition u(0, x) = - sin(x); these results

are discussed in Section 5.2 below. General initial conditions were also used to compute asymmetric

profiles; in many instances the initial conditions are taken to be random and so the attractors we

compute and describe below in Section 5.3 and Table 2 are those with the largest basin of attraction.

In Section 5.4 we give some results for m 7t 1 and in particular try to quantify the effect of large

dispersion on the dynamics. We use various diagnostic tools to analyze the data of our numerical

experiments and use them to infer the type of attractors present. These techniques are summarized

in the Appendix.

5.2 Odd parity solutions of the OSCKS

When $1 = 0, odd-parity solutions of the KS equation for 1 > v >_ 0.06 (approximately) are

attracted to a non-uniform steady state. Within this window, are sub-windows where fully modal,

bimodal and trimodal attractors are observed, with respective spatial periods of 2_r, _r, and 3_r/2.

For _f 7t 0 and for 1 > v >_ .06 our numerical experiments show that solutions of the OSCKS

equation lock into the frequency of the forcing pressure gradient _flcos (wit).

For example, the attractor of the odd-parity KS at _, = 0.1 yields a bi-modal steady state which

becomes time-periodic when _fl _ 0. The time dependence is seen in Figure 3a where the evolution

_2_ u2(t x)dx say, is plotted for two different frequencies,of the energy of the solution, E(t) = _ Jo _ ,

w_ = 1,2. It is found that E(t) is periodic of period 2_. The spatial characteristics of the flow

are preserved by the forcing as shown Figure 3b. This picture was produced as follows: If the flow

is periodic in t, then u(t, x) = u(t + 2_ x_ and so plotting u(t, x) at time intervals separated by
¢o 1" , /

2__should yield the same curve as seen in Figure 3b. Further more we chose to plot u at times in
o11

its cycle where E(t) is maximum and ux(t, 0) > 0 and compared the profile with the steady-state

solution of the KS for _fl = 0, finding identical results. It can be concluded, therefore, that the

forcing in this case produces a standing wave locked onto the driving pressure gradient.

The KS equation also supports windows in the parameter space (_,) where chaos is preceded by

a complete sequence of period doubling bifurcations (see SP and PS). One particular example is

': i _ _ ,,.
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the case y = 0.0303 for which the period is 0.89 time units. The behavior of this attractor in the

presence of harmonic background forcing was analyzed by following the evolution of u for various

values of 61 and wl. Even for small 61 the periodic attractor is found to become quasi-periodic

after a long time. Figures 4(a-c) show E(t), the phase plane of E(t) and the return map of the

minima, for increasing 61 = 0.01, 0.1, 0.5 respectively, and fixed forcing frequency wl = 1.0. As 61

increases from 0.01 to 0.1, it is seen from Figures 4(a) and 4(b) that the energy has two dominant

time scales: an oscillation with period roughly that of the KS with 61 = 0 and a longer modulation

with period roughly 2_" provided by the forcing pressure gradient. The interaction between the two

frequencies produces a quasi-periodic flow as can be seen from the return maps in Figures 4(a),(b)

which are two closed unfolded loops in both cases. One of the loops in Figure 4(a) is very flat and

appears as a line but an enlargement shows an open loop. The phase-plane is more revealing for the

_1 = 0.01 case; the lower modulational frequency is responsible for the larger turns while the higher

frequency produces the smaller turns in the phase-plane. The spacings between turns eventually

fill out more and more indicating the quasi-periodicity confirmed numerically by the return maps.

When _1 is increased further to a value of 0.5, it is found that after approximately 160 time units

of irregular modulated high frequency oscillations the solution locks into the forcing frequency and

its period is 27r. This is confirmed further by the phase-plane and the return map which contains

only a single point - see Appendix.

For _ << 1 we observe regions of chaotic oscillations for the solution of both the KS equation and

the OSCKS equation. The aperiodic oscillations alternate with periodic/quasi-periodic regions, but

the lengths of the subwindows become vanishingly small as v decreases. A phase-plane anMysis and

the return map of the minima do not indicate recognizable behaviour, such as strange attractors.

5.3 Solutions of the OSCKS equation with general initial data

We have also computed a number of solutions of (39) for general initial data, These computations

are more expensive that those of Section 5.2 since there are twice as many equations now. This class

of solutions gives richer dynamics for both the KS and OSCKS equations. For the KS equation,

for example, we observe various steady state attractors for a wide range of _, < 1, but in addition,

additional dynamics are found such as travelling waves and homoclinic bursting (periodic and

aperiodic). Consider for example the case L, = 0.3 for which the KS equation yields a travelling wave

solution. Figure 5(a) shows that the energy quickly evolves to a constant value (4.27 approximately)

and a steady-state travelling wave emerges after a long time whose phase-speed is small but non-

zero. The travelling wave can be seen from the last figure which was produced by recording the

solution after 11 equal time intervals and shifting each profile verically by 5 units. Figures 5(b),(c)

show the effect of the background oscillations on the steady-state travelling wave depicted in Figure

5(a). The values of _1 are 0.01 and 0.1 respectively and the OSCKS equation is found to yield a

wave which oscillates quasi-periodically and also travels. The return maps indicate that the solution

is quasi-periodic.
In the window 0.23249 > v > 0.17735 solutions of the KS equation undergo periodic homoclinic

bursting. A representative case has _ = 0.22 and is depicted in Figure 6(a) which shows that

the energy remains constant for approximately 21 time units between each localized burst. The

phenomenon is time periodic and repeats itself as indicated by the phase plane which contains

about 20 turns (for the developed solution) superimposed on each other. Even for a small 6 = 0.05,

the solution of OSCKS equation appears to be chaotic even after a significant time has elapsed.

The phase plane analysis and the return map do not give convincing evidence of quasi-periodicity.

It is interesting to note from the return map that the solution is almost quasi-periodic but drifts

away from the what would have been closed loops.
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For smaller _, solutions of both the KS and OSCKS equations show mostly chaotic oscillations.

We present a typical case for the KS with v = 0.1212; the time history of E(t) is chaotic but the

phase plane is not sufficient to determine the type of oscillations present. The return map in Figure

7(a), however, indicates the presence of a strange attractor made up of five branches joined in a

common region where folding takes place. Figure 7(aa) presents graphical evidence that the strange

attractor is self-similar, by carrying out successive enlargements of the original return map; the

dimensions of the first picture are 0.12 × 0.12 and by the fifth enlargement the size is 0.0001 × 0.0001

so that an enlargement of 1200 has taken place with the self-similarity clearly apparent. In the

results presented in Figure 7(b) we quantify the effect of a background oscillation with 81 = 0.1

on the chaotic motion of Figure 7(a). It can be seen that E(t)is highly irregular and its phase

plane yields a picture confirming this. The return map fails to produce a recognizable pattern; in

fact from the return map we can exclude the possibilities of either quasi-periodic motion or chaotic

motion with a strange attractor similar to the 51 = 0 solution. It is possible that a strange attractor

in a higher dimension than the plane is present (such a possiblity could be studied by forming the

return map of triplets etc.) but this is not explored here.

5.4 Effects of viscosity stratification, (m _ 1)

When the viscosities of the film and core fluids differ, a non local term L(u) is introduced into

the evolution equation (see (39). In the absence of oscillatory modulations in the driving pressure

gradient, it has been shown in PMR that even for relatively small viscosity stratification (i.e. for

m near 1), otherwise chaotic solutions of the equation describing the interfacial position (given by

numerical solution of the KS equation), are organized into regular travelling wave pulses. This

is true for both the canonical regimes presented in Sections 3.1 and 3.2 respectively. Physically

this reflects the effect of dispersion provided by the viscosity stratification on the nonlinear waves;

it has been established numerically for a wide range of L, that for _il = 0 there exists a critical

value of m (which depends on _,) above which travelling waves are attained. The capillary terms

(second and fourth derivatives) act to set the scale of the pulses which have been found to increase

inamplitude as the dispersion increases. A detailed study of dispersive effects in core-annular flows

can be found in Coward, Papageorgiou _ Smyrlis (1994). To illustrate these results we present a

numerical solution with the purely disspersive Bessel functions kernel of Section 3.1 at a value of

_, = 0.1212 and _1 = 0 which for m = 1 yields chaotic oscillations (see Figure 7a). For m = 3.0 the

large time evolution is attracted to a travelling wave state as shown in Figure 8 which depicts the

time evolution over 4.5 spatial periods, by plotting the profiles at successive equispaced times by

shifting them vertically by a small amount to facilitate the graphical representation.

A forced oscillation is now imposed on the flow of Figure 8 with a _f= 0.1. The results are given

in Figure 9: From the energy plot we see that a small oscillation persists about a constant value.

This oscillation is brought out more clearly in the phase plane plot which indicates high frequency

oscillations modulated by a low frequency motion provided by the forcing. A convergence study

was done to verify that the high frequency oscillations are present and not due to numerical errors.

In fact the modulated high frequency response is shown to be quasi-periodic by the return map

of the energy minima shown in the last of Figure 9. The nonlinear travelling Wave in the absence

of forcing, then, is found to still preserve its travelling character as expected but also oscillates in

time quasi-periodically. A picture of the wave motion is provided in Figure 10 which was produced

in the same way as Figure 8 with a vertical shift of 3 units. The travelling component of the wave

is easily discerned; the quasi-periodic modulations cause the small displacements in the wave and

consequently the dark lines which are an indication of the locus of the wave minima in the x - u
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plane are not straight lines but modulated around a straight line. An observation which is clearly

illustrated by the spatial solution of Figure 10 in which u is given at successive time intervals, with

6 Conclusions

A weakly nonlinear asymptotic theory has been used to derive some novel partial differential equa-

tions that govern the stability of two-phase core-annular flow when an Oscillatory pressure gradient

acts. The equations extend the familiar Kuramoto-Sivashinsky models of CAFs to analogous evo-

lution systems with time periodic coefficients. The main interest of this work is in the study of

interfacial instability of oscillatory two-phase flows and the parametric evaluation of its effects on

conventional CAF caused by constant pressure gradients. Such studies are desirable in the deter-

mination of physical mechanisms in complicated fluid flows which may be used advantageously to

control inherent instabilities.

The main findings of our numerical experiments can be summarized in the following categories:

(i) Stationary steady-states become time-periodic with frequencies locked to that of the forcing; (ii)

Time periodic states become quasi-periodic,chaotic or lock into the forcing frequency if the forcing

amplitude is large enough (for odd-parity solutions at least). (iii) Travelling wave states bacome

travelling quasi-periodic waves. (iv) Periodic homoclinic bursts become unrecognized chaotic states.

(v) Chaotic states which possess self-similar strange attractors become unrecognized chaotic states.

The forcing appears to promote irregular oscillations in regimes with large dispersion which

would otherwise produce travelling wave pulses in unforced flows. The solutions in this case are

perturbed by a quasi-periodic in time modulation whose amplitude increases with the forcing

amplitude.
Our numerical results have not revealed any situations where the solutions lock into subharmonic

or other lower frequencies with respect to the background forcing oscillation. It appears that if

there is frequency locking this is at the driving frequency, for a wide range of parameters.

• i

18



j •

References

[1] Chen, K., Bai, R. _z Joseph, D.D. 1990 Lubricated pipelining. Part 3. Stability of core-annular

flow in vertical pipes. J. Fluid Mech. 214, 251-286.

[2] Chow, S.-N. & Hale, J.K. Methods of Bifurcation Theory, Springer- Verlag, New York, 1982.

[3] Constantin, P., Foias, C., Nicolaenko, B., Temam, R., Integral Manifolds and Inertial Manifolds

for Dissipative Partial Differential Equations, Appl. Math. Sciences, No. 70, Springer-Verlag,

New York_ 1988.

[4] Coward, A.V. & Hall, P. 1993 On the nonlinear interracial instability of rotating core-annular

flow. Theoret. Comput. Fluid Dynamics, 5, 269-289.

[5] Coward, A.V. _ Papageorgiou, D.T. 1994 Stability of oscillatory two-phase Couette flow. IMA

J. Appl. Maths, in the press.

[6] Devaney, R.L., An Introduction to Chaotic Dynamical Systems, Benjamin/Cummings, Menlo

Park, Ca., 1986.

[7] Feigenbaum, M. 1980 The transition to aperiodic behavior in turbulent systems, Commun.

Math. Phys. 77, 65-86.

[8] Georgiou, E., Maldarelli, C., Papageorgiou, D.T. _ Rumschitzki, D.S. 1992 An asymptotic

theory for the linear stability of core-annular flow in the thin annular limit. J. Fluid Mech.

243, 653-677.

[9] Goren, S.L. 1962 The instability of an annular thread of fluid. J. Fluid Mech. 27, 309-319.

[10] Hickox, C.E. 1971 Instability due to viscosity and density stratification in axisymmetric pipe

flow. it Phys. Fluids 14, 251-262

[11] Hooper, A. P. 1985 Long-wave instability at the interface between two viscous fluids: Thin

layer effects. Phys. Fluids 28(6), 1613-1618.

[12] Hooper, A. P. and Boyd, W. G. C. 1983 Shear-flow instability at the interface between two

viscous fluids. J. Fluid Mech. 128, 507-528.

[13] Hu, H.H. _ Joseph, D.D. 1989 Lubricated pipelines: stability of core-annular flow. Part 2. J.

Fluid Mech. 205, 359-396

[14] Hu, H.H., Lundgren, T. _: Joseph, D.D. 1990 Stability of core-annular flow with a small

viscosity ratio, it Phys. Fluids A2, 1945-1954.

[15] Hyman, J.M., Nicolaenko, B. 1986 The Kuramoto-Sivashinsky equations, a bridge between

PDEs and dynamical systems, Physica D18, 113-126.

[16] Hyman, J.M., Nicolaenko, B., Zaleski, S. 1986 Order and complexity in the Kuramoto-

Sivashinsky model of turbulent interfaces, Physica D23, 265-292.

[17] Jolly, M.S., Kevrekides, I.G. and Titi, E.S. 1990 Approximate inertial manifolds for the

Kuramoto-Sivashinsky equation: analysis and computations, Physica D44, 38-60.

[18] Joseph, D.D., Renardy, Y. _: Renardy, M. 1984 Instability of the flow of immiscible liquids

with different viscosities in a pipe. J. Fluid Mech. 141, 309-317

[19] Kevrekidis, I.G., Nicolaenko, B., Scovel, C. 1990 Back in the saddle again : A computer

assisted study of Kuramoto-Sivashinsky equation, SIAM J. Appl. Math. 50, No. 3, 760-790.

[20] Nicolaenko, B., Scheurer, B., Temam, R. 1985 Some Global Dynamical Properties of the

Kuramoto-Sivashinsky Equation: Nonlinear Stability ans Attractors, Physica D16 155-183.

19



L_ / '_ !)i

ir _ ' / : :i

/

i¸

/

_ i _

[21] Papageorgiou D.T., Maldarelli C. _ Rumschitzki D.S. 1990 Nonlinear interracial stability of

c0re-annular flows. Phys. Fluids A Vol. 2 Part 3, 340-352.

[22] Papageorgiou D.T. &: Smyrlis, Y.S. 1991 The route to chaos for the Kuramoto-Sivashinsky

equation. Theoret. Comput. Fluid Dynamics 3, 15-42.

[23] Preziosi,L., Chen, K. & Joseph, D.D. 1989 Lubricated pipelines: Stability of core-annular flow.

J. Fluid Mech. 201, 323-356.

[24] Renardy, Y. 1985 Instability at the interface between two shearing fluids in a channel. Phys.

Fluids 28(12), 3441-3443.

[25] Renardy, Y. 1987 The thin-layer effect and interracial stability in a two-layer Couette flow

with similar liquids. Phys. Fluids 30(6), 1627-1637.

[26] Sivashinsky, G.I., Michelson, D.M. 1980 On irregular wavy flow of a liquid down a vertical

plane, Prog. Theor. Phys. 63, 2112-2114.

[27] Smyrlis, Y.S. _ Papageorgiou, D.T. 1991 Predicting chaos for infinite-dimensional dynamical

systems: the Kuramoto-Sivashinsky equation, a case study. Proc. Nat. Acad. Sciences, USA

88 No. 24, 11129-11132.

[28] Tomotika, $. 1935 On the stability of a cylindrical thread of a viscous liquid surrounded by

another viscous fluid. Proc. Roy. Soc. Lond. A150, 322-337.

[29] yon Kerczek, C. H. 1987 Stability characteristics of some oscillatory flows - Poiseuille, Ekman

and films. In Stability of Time Dependent and Spatially Varying Flows, D.L. Dwoyer and M.Y.

Hussaini, eds, Springer-Verlag.

[30] Yih, C.-S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27, 337-352.

[31] Yih, C.-S. 1968 Instability of unsteady flows or configurations Part 1. Instability of a horizontal

liquid layer on an oscillating plate. J. Fluid Mech. 31, 737-751.

/

• I /

/,

2O



ii:i

/r

i

,i

%

A Analysis of the numerical data

The diagnostics we use are aimed at the determination of the type of attractors present. To do this

we first begin with the L2-norm (or energy) of the solution define d by

1 [2_u2(t,x)dx,
E(t) = 2_r Jo

and which can be computed along with the solution. For example, in the odd-parit y case we have

1 N

E(t) = -_ _ a_(t),
1

with analogous expressions in the general case. Of concern is the behavior of E(t) for large t. If

E(t) tends to a non-zer o constant as t ---* oo, for example, then u(t, x) tends to a non-uniform

stationary or travelling steady state. Time periodicity in the fourier coefficients (and consequently

in u(t, x)) show s up as a time periodicity in E(t): A useful way to confirm such periodic flows is
to constru ct numerically the phase-plane of (E, E); the index of the dosed curve determines the

numbe r of maxima and minima of E(t) over one period and can be used with good accuracy to

follow pe riod-doubling bifurcations, for instance, as in (SP) where as many as thirteen bifurcations

we re analyzed this way.

When the dynamics gets more complicated and chaotic, the phase plane may gain mo re and

more turns as the dynamics enter a strange attractor, fill out whole regions of the (E,tE) plane

as t increases as for quasi-periodic oscillations for instance, or produce dynami cs which are both

random and unrecognizable. In all these cases it is difficult to infer with much certainty what is

happening and a more accurate test is needed. One diagnostic we found to be very useful is the

return map described below.

A return map can be constructed as follows. Given the time history of E(t) (th e non-constant

state is the interesting one), and the phase plane described above, Poincar6 secti ons can be

constructed in the usual way. In particular the minima and maxima of E(t) are Poincar6 sections

d2E negative and positive respectively. For def initeness consider the minima ofhaving/_ = 0 and dt---W

E(t) from a given point in time (large enough for transients to be unimportant) onwards and define
E oothem by the infinite sequence { _}1 • The return map of these values, which gives a picture of the

attractor in that i t is a construction of the map (it may not necessarily be a function) necessary to

reproduce the flo w, is obtained by collectively plotting the pairs points {(Ek, Ek+_)}_=lftY in the

plane. In practice we do not compute an infinite number of minima but must nonetheless compute

enough to provide a picture of the dynamics. In addition is is essential that the values o f the
minima be found with enough accuracy from the computation - see accuracy requirements belo w.

The simple example of the logistic map serves as a useful illustration of the ab ove construction.

The logistic map produces a sequence of iterates {X_}l from the quadratic formula x_+l = 4#xn (1-

xn) - f(x_) with 0 < # < 1 a parameter. A gr aphical iteration starting from some initial value

produces the desired sequence (see Devaney for instance) . This iteration and proceeds as follows:

Start from a given point xk say; the iterate of Xk is Xk+l = f(xk) whose value is the length of the

vertical line joining xk to the curve; the iterate of Xk+l is found by moving horizontally from the

point (xk, xk+l) to the line of unit slope through the origin, and then vertically up to the curve

and the process can be repeated ad infinitum. Collectively, then, the points {(Xk, Xk+l)}k°°=l are

drawn in the plane and all lie on the parabola of the logistic map. The construction of the return

map from a sequence such as {En}_ ° duplicates exactly this graphical iteration and constructs

the unknown curve f(x), if it exists, or a more complicated object such as a strange attractor for

2i
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instance. Such return map diagnostics have been used extensively by experimentalists - see Berg_

et al. for numerous examples.

The interpretation of the return map is usually quite clear provided the minima have been

determined accurately. There are five distinct pictures which we have encountered in our numerical

work on the KS and the OSCKS based on the r eturn map of the minima of E(t) and which are

interpreted as follows as far as the dynamics of E(t) are concerned:

1. One or more fixed points in the plane - time periodic flow with a number o f minima equal

to the number of fixed points.

2. An open curve in the plane which may or may not be a single valued functio n - chaotic

flow as would be obtained from the logistic map for instance (the former case), or ju st

after the Feigenbaum cascade to chaos for the KS equation (see PS, SP).

3. An open curve which is highly folded and which exhibits self-similar behav ior at smaller

scales - chaotic flow with a strange attractor of dimension between 1 and 2 reme niscent

of the H_non map - such behavior has been found by Papageorgiou & Smyrlis (1994) f or

the KS equation far from the Feigenbaum cascade.

4. One or more closed curves with no folding - quasi-periodic flow as reporte d in several

examples in the present article.

5. Unrecognizable pattern which fills out regions of the plane - we term this type of flow as

unrecognizable chaos and several examples are given here and in Papageorgiou & Smyrlis

(1994) for the KS equation.

Finally we make a comment about the need of high accuracy requirements. As an il lustration of

such needs, consider a case which produces quasi-periodic oscillations in E(t). E(t) is numerically

computed at intervals separated by the time-step At. In many problems a large At can be used to

compute the flow accurately. The simplest approach of finding the energy minima is to dynamically

track the minimum value and store it when found; the error associ ated with this is of the order of

magnitude of the local value of E × At; instea d of a closed curve of zero thickness such errors can

indicate spurious behavior which can be of the same size as real phenomena (this is especially true

as /_1 becomes increasingly small er and the amplitude of quasi-periodic modulations decreses).

To overcome this difficulty the minima are computed dynamically in the code by a high order

interpolation involving as many as 15 points, depending on the time-step, on either side of a local

maximum or minimum. All results reported here have been produced by an accurate evaluation of

the minima and maxima of E(t) in order to produce highly accurat e and convincing return maps.
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Tables

//

0.9

0.9

0.1

0.1

0.1

0.0303

0.0303

0.0303

0.0303

0.0215

0.0215

0.0215

N 61 Wl

10 0.0 0.0

10 0.5 1.0

16 0.1 1.0

16 0.1 2.0

16 0.1 0.1

20 0.0 0.0

20 0.01 1.0

2O 0.1 1.0

2O 0.5 1.0

24 0.0 0.0

24 0.1 1.0

24 0.5 1.0

Description Figure

Uni-modal steady attractor

Uni-modal periodic attractor, T = 2_r 2

Bi-modal periodic attractor, T = 21r 3

Bi-modal periodic attractor, T = 7r 3

Bi-modal periodic attractor, T = _r/5
Periodic attractor

Quasi-periodic oscillations 4(a)

Quasi-periodic oscillations 4(b)

Periodic attractor, T = 2_r 4(c)

Chaotic oscillations

Chaotic oscillations

Chaotic oscillations

Table 1 : Overview of solutions of the OSCKS with sinusoidal profile.

v N 61 Wl

0.3 12 0.0 0.0

0.3 12 0.01 1.0

0.3 12 0.1 1.0

0.3 12 0.5 1.0

0.22 16 0.0 0.0

0.22 16 0.1 1.0

0.136 16 0.0 0.0

0.136 16 0.0 1.0

0.1212 20 0.0 0.0

0.1212 16 0.1 1.0

0.1212 16 0.5 1.0

0.085 16 0.0 0.0

0.085 16 0.1 1.0

Description Figure

Traveling wave 5(a)

Quasi-periodic traveling wave 5(b)

Quasi-periodic traveling wave 5(c)

Quasi-periodic traveling wave

Periodic homoclinic bursting 6(a)

Chaotic oscillations 6(b)

Bi-modal steady attractor

Modulated bi-modal attractor

Chaotic oscillations/Strange attractor 7(a) & 7(aa)

Chaotic oscillations 7(b)

_- Chaotic oscillations

Chaotic oscillations

Chaotic oscillations

Table 2 : Overview of solutions of the OSCKS with mixed profile.
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Figure 5(a)
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5(a) KS equation with general initial data: travelling wave with v = 0.3; unimodal attractor.
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Return map for Figure 7a
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