9 research outputs found

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Multi-Feature Manifold Discriminant Analysis for Hyperspectral Image Classification

    No full text
    Hyperspectral image (HSI) provides both spatial structure and spectral information for classification, but many traditional methods simply concatenate spatial features and spectral features together that usually lead to the curse-of-dimensionality and unbalanced representation of different features. To address this issue, a new dimensionality reduction (DR) method, termed multi-feature manifold discriminant analysis (MFMDA), was proposed in this paper. At first, MFMDA explores local binary patterns (LBP) operator to extract textural features for encoding the spatial information in HSI. Then, under graph embedding framework, the intrinsic and penalty graphs of LBP and spectral features are constructed to explore the discriminant manifold structure in both spatial and spectral domains, respectively. After that, a new spatial-spectral DR model for multi-feature fusion is built to extract discriminant spatial-spectral combined features, and it not only preserves the similarity relationship between spectral features and LBP features but also possesses strong discriminating ability in the low-dimensional embedding space. Experiments on Indian Pines, Heihe and Pavia University (PaviaU) hyperspectral data sets demonstrate that the proposed MFMDA method performs significantly better than some state-of-the-art methods using only single feature or simply stacking spectral features and spatial features together, and the classification accuracies of it can reach 95.43%, 97.19% and 96.60%, respectively
    corecore