12 research outputs found

    Efficient Tandem Addition/Cyclization for Access to 2,4-Diarylquinazolines via Catalytic Carbopalladation of Nitriles

    No full text
    The first example of the palladium-catalyzed tandem addition/cyclization of 2-(benzylidenamino)benzonitriles with arylboronic acids has been developed. This transformation features good functional group tolerance and provides an alternative synthetic pathway to access 2,4-diarylquinazolines in moderate to good yields. A plausible mechanism for the formation of 2,4-diarylquinazolines involving sequential nucleophilic addition followed by an intramolecular cyclization is proposed

    Efficient Approach to Carbinol Derivatives through Palladium-Catalyzed Base-Free Addition of Aryltriolborates to Aldehydes

    No full text
    Palladium-catalyzed base-free addition of aryltriolborates to aldehydes has been developed, leading to a wide range of carbinol derivatives in good to excellent yields. The efficiency of this transformation was demonstrated by compatibility with a wide range of functional groups. The present synthetic route to carbinol derivatives could be readily scaled up to gram quantity without difficulty. Thus, this method represents a simple and practical procedure to access carbinol derivatives

    Research on Physiological Characteristics and Differential Gene Expression of Rice Hybrids and Their Parents under Salt Stress at Seedling Stage

    No full text
    Soil salinization is one of the most important abiotic stresses which can seriously affect the growth and development of rice, leading to the decrease in or even loss of a rice harvest. Increasing the rice yield of saline soil is a key issue for agricultural production. The utilization of heterosis could significantly increase crop biomass and yield, which might be an effective way to meet the demand for rice cultivation in saline soil. In this study, to elucidate the regulatory mechanisms of rice hybrids and their parents that respond to salt stress, we investigated the phenotypic characteristics, physiological and biochemical indexes, and expression level of salt-related genes at the seedling stage. In this study, two sets of materials, encapsulating the most significant differences between the rice hybrids and their parents, were screened using the salt damage index and a hybrid superiority analysis. Compared with their parents, the rice hybrids Guang-Ba-You-Hua-Zhan (BB1) and Y-Liang-You-900 (GD1) exhibited much better salt tolerance, including an increased fresh weight and higher survival rate, a better scavenging ability towards reactive oxygen species (ROS), better ionic homeostasis with lower content of Na+ in their Na+/K+ ratio, and a higher expression of salt-stress-responsive genes. These results indicated that rice hybrids developed complex regulatory mechanisms involving multiple pathways and genes to adapt to salt stress and provided a physiological basis for the utilization of heterosis for improving the yield of rice under salt stress

    Palladium-Catalyzed Three-Component Tandem Process: One-Pot Assembly of Quinazolines

    No full text
    The first example of the palladium-catalyzed, three-component tandem reaction of 2-aminobenzonitriles, aldehydes, and arylboronic acids has been developed, providing a new approach for one-pot assembly of diverse quinazolines in moderate to good yields. A noteworthy feature of this method is the tolerance of bromo and iodo groups, which affords versatility for further synthetic manipulations. Preliminary mechanistic experiments indicate that this tandem process involves two possible mechanistic pathways for the formation of quinazolines via catalytic carbopalladation of the cyano group
    corecore