141 research outputs found

    Mechanism Enhancing Arabidopsis Resistance to Cadmium: The Role of NRT1.5 and Proton Pump

    Get PDF
    Aim: Heavy metal pollution is serious in China, and abscisic acid (ABA) is an important stress hormone. How it regulates plant tolerance to cadmium remains unclear, so we aimed to explore the molecular mechanism responsible for enhanced cadmium resistance in Arabidopsis wild-type and mutant plants and Brassica napus seedlings.Methods: Arabidopsis/B. napus were cultured hydroponically for 28/15 days and then treated with 20/10 Ī¼M Cd/Cd+ABA (5 Ī¼M) for 3/4 days. Chlorophyll degradation rate, SPAD values, proline, MDA, ABA, NO3āˆ’, and Cd concentrations were measured in root vacuoles and protoplasts; root to shoot NO3āˆ’ and Cd concentration ratios were determined and NRT1.5-, NRT1.8-, BnNRT1.5-, and BnNRT1.8-related gene expression was studied.Results: Cytoplasmic ABA levels in root cells of bglu10 and bglu18 Arabidopsis mutants were significantly lower than those in the wild-type, apparently making the latter more resistant to Cd. NO3āˆ’ long-distance transporter NRT1.5 responded to ABA signaling by downregulating its own expression, while NRT1.8 did not respond. Concomitantly, proton pump activity in wild-type plants was higher than in the bglu10 and bglu18 mutants; thus, more NO3āˆ’ and Cd accumulated in the vacuoles of wild-type root cells. ABA application inhibited Cd absorption by B. napus. BnNRT1.5 responded to exogenous ABA signal by downregulating its own expression, while the lack of response by BnNRT1.8 resulted in increased amount of NO3āˆ’ accumulating in the roots to participate in the anti-cadmium reaction.Conclusion:NRT1.5 responds to the ABA signal to inhibit its own expression, whereas unresponsiveness of NRT1.8 causes accumulation of NO3āˆ’ in the roots; thus, enhancing Cd resistance. In Arabidopsis, because of proton pump action, more NO3āˆ’ and Cd accumulate in the vacuoles of Arabidopsis root cells, thereby reducing damage by Cd toxicity. However, in B. napus, the addition of exogenous ABA inhibited Cd absorption. Our data provide a sound basis to the theoretical molecular mechanism involved in hormone signaling during response of plants to heavy metal stress

    Comparative studies of the anti-thrombotic effects of saffron and HongHua based on network pharmacology

    Get PDF
    Purpose: To investigate the comparative anti-thrombotic effects of saffron and Honghua, and also to explore possible mechanisms in thrombosis based on network pharmacology. Methods: A network pharmacology model was used for bioactive components, targets and pathways for saffron and HongHua via Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), PharmMapper, Genecard, Uniprot and KEGG databases. In animal experiments, 72 rats were randomly divided into 9 groups: normal control group (NC), model control group (MC), crocetin groups (80, 40, 20 mg/kg), hydroxysafflor yellow A(HSYA) groups (80, 40, 20 mg/kg), and aspirin group (40 mg/kg). Using in vitro thrombosis models and an acute blood stasis model in vivo, the anti-thrombotic effects of these treatments on clotting time, hemorheology parameters, Thromboxane B2 (TXB2), plasmin activator inhibitor (PAI), protein C (PC), protein S (PS), and thrombinantithrombin complex (TAT) were determined and comparisons made for saffron and HongHua. Results: Five potential compounds, 16 anti-thrombotic targets and 27 pathways were predicted for saffron, while 22 compounds, 37 disease targets and 35 pathways were found for HongHua (p < 0.05). Pharmacological experiments revealed that crocetin and HSYA had significant effects on thrombus length, thrombus wet/dry mass, whole blood viscosity (WBV), erythrocyte aggregation index (EAI), clotting time and D-dimer for the high and middle groups. Unlike HSYA, crocetin also had significant and dose-dependent effects on PAI, prothrombin fragment 1+2 (F1+2) and PS and had highly significant effects on TXB2 and TAT. Conclusion: This research provides a systematic, comprehensive and comparative analysis of component, target and anti-thrombotic pathways of saffron and HongHua based on network pharmacology, and also shows that saffron has more significant anti-thrombotic effect than HongHua. Keywords: Saffron; HongHua; Network pharmacology; Anti-thrombosis; Network mode

    Exploring the application and challenges of fNIRS technology in early detection of Parkinsonā€™s disease

    Get PDF
    BackgroundParkinsonā€™s disease (PD) is a prevalent neurodegenerative disorder that significantly benefits from early diagnosis for effective disease management and intervention. Despite advancements in medical technology, there remains a critical gap in the early and non-invasive detection of PD. Current diagnostic methods are often invasive, expensive, or late in identifying the disease, leading to missed opportunities for early intervention.ObjectiveThe goal of this study is to explore the efficiency and accuracy of combining fNIRS technology with machine learning algorithms in diagnosing early-stage PD patients and to evaluate the feasibility of this approach in clinical practice.MethodsUsing an ETG-4000 type near-infrared brain function imaging instrument, data was collected from 120 PD patients and 60 healthy controls. This cross-sectional study employed a multi-channel mode to monitor cerebral blood oxygen changes. The collected data were processed using a general linear model and Ī² values were extracted. Subsequently, four types of machine learning models were developed for analysis: Support vector machine (SVM), K-nearest neighbors (K-NN), random forest (RF), and logistic regression (LR). Additionally, SHapley Additive exPlanations (SHAP) technology was applied to enhance model interpretability.ResultsThe SVM model demonstrated higher accuracy in differentiating between PD patients and control group (accuracy of 85%, f1 score of 0.85, and an area under the ROC curve of 0.95). SHAP analysis identified the four most contributory channels (CH) as CH01, CH04, CH05, and CH08.ConclusionThe model based on the SVM algorithm exhibited good diagnostic performance in the early detection of PD patients. Future early diagnosis of PD should focus on the Frontopolar Cortex (FPC) region

    Identification of the Genomic Region Underlying Seed Weight per Plant in Soybean (Glycine max L. Merr.) via High-Throughput Single-Nucleotide Polymorphisms and a Genome-Wide Association Study

    Get PDF
    Seed weight per plant (SWPP) of soybean (Glycine max (L.) Merr.), a complicated quantitative trait controlled by multiple genes, was positively associated with soybean seed yields. In the present study, a natural soybean population containing 185 diverse accessions primarily from China was used to analyze the genetic basis of SWPP via genome-wide association analysis (GWAS) based on high-throughput single-nucleotide polymorphisms (SNPs) generated by the Specific Locus Amplified Fragment Sequencing (SLAF-seq) method. A total of 33,149 SNPs were finally identified with minor allele frequencies (MAF) > 5% which were present in 97% of all the genotypes. Twenty association signals associated with SWPP were detected via GWAS. Among these signals, eight SNPs were novel loci, and the other twelve SNPs were overlapped or located in the linked genomic regions of the reported QTL from SoyBase database. Several genes belonging to the categories of hormone pathways, RNA regulation of transcription in plant development, ubiquitin, transporting systems, and other metabolisms were considered as candidate genes associated with SWPP. Furthermore, nine genes from the flanking region of Gm07:19488264, Gm08:15768591, Gm08:15768603, or Gm18:23052511 were significantly associated with SWPP and were stable among multiple environments. Nine out of 18 haplotypes from nine genes showed the effect of increasing SWPP. The identified loci along with the beneficial alleles and candidate genes could be of great value for studying the molecular mechanisms underlying SWPP and for improving the potential seed yield of soybean in the future

    Exploring the Protective Effects and Mechanism of Crocetin From Saffron Against NAFLD by Network Pharmacology and Experimental Validation

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) is a burgeoning health problem but no drug has been approved for its treatment. Animal experiments and clinical trials have demonstrated the beneficial of saffron on NAFLD. However, the bioactive ingredients and therapeutic targets of saffron on NAFLD are unclear.Purpose: This study aimed to identify the bioactive ingredients of saffron responsible for its effects on NAFLD and explore its therapy targets through network pharmacology combined with experimental tests.Methods: Various network databases were searched to identify bioactive ingredients of saffron and identify NAFLD-related targets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted to enrich functions and molecular pathways of common targets and the STRING database was used to establish a protein-protein interaction network (PPI). The effect of crocetin (CCT) on NAFLD was evaluated in a mouse model of NAFLD by measuring the biomarkers of lipid, liver and renal function, oxidative stress, and inflammation. Liver histopathology was performed to evaluate liver injury. Nuclear factor erythroid-related factor (Nrf2) and hemeoxygenase-1 (HO-1) were examined to elucidate underlying mechanism for the protective effect of saffron against NAFLD.Results: A total of nine bioactive ingredients of saffron, including CCT, with 206 common targets showed therapeutic effects on NAFLD. Oxidative stress and diabetes related signaling pathways were identified as the critical signaling pathways mediating the therapeutic effects of the active bioactive ingredients on NAFLD. Treatment with CCT significantly reduced the activities of aspartate aminotransferase (AST), alanine transaminase (ALT), and the levels of total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), blood urea nitrogen (BUN), creatinine (CR), and uric acid (UA). CCT significantly increased the activities of superoxide dismutase (SOD), and catalase (CAT). Histological analysis showed that CCT suppressed high-fat diet (HFD) induced fat accumulation, steatohepatitis, and renal dysfunctions. Results of ELISA assay showed that CCT decreased the expression of tumor necrosis factor-Ī± (TNF-Ī±), interleukin-6 (IL-6), interleukin-1Ī² (IL-1Ī²), and increased the expression of HO-1 and Nrf2.Conclusion: This study shows that CCT is a potential bioactive ingredient of saffron that treats NAFLD. Its mechanism of action involves suppressing of oxidative stress, mitigating inflammation, and upregulating Nrf2 and HO-1 expression

    Investment Case for a Comprehensive Package of Interventions Against Hepatitis B in China: Applied Modeling to Help National Strategy Planning.

    Get PDF
    BACKGROUND content: In 2016, the first global viral hepatitis elimination targets were endorsed. An estimated one-third of the world's population of individuals with chronic hepatitis B virus (HBV) infection live in China and liver cancer is the sixth leading cause of mortality, but coverage of first-line antiviral treatment was low. In 2015, China was one of the first countries to initiate a consultative process for a renewed approach to viral hepatitis. We present the investment case for the scale-up of a comprehensive package of HBV interventions. METHODS content: A dynamic simulation model of HBV was developed and used to simulate the Chinese HBV epidemic. We evaluated the impact, costs, and return on investment of a comprehensive package of prevention and treatment interventions from a societal perspective, incorporating costs of management of end-stage liver disease and lost productivity costs. RESULTS content: Despite the successes of historical vaccination scale-up since 1992, there will be a projected 60 million people still living with HBV in 2030 and 10 million HBV-related deaths, including 5.7 million HBV-related cancer deaths between 2015 and 2030. This could be reduced by 2.1 million by highly active case-finding and optimal antiviral treatment regimens. The package of interventions is likely to have a positive return on investment to society of US$1.57 per US dollar invested. CONCLUSIONS content: Increases in HBV-related deaths for the next few decades pose a major public health threat in China. Active case-finding and access to optimal antiviral treatment are required to mitigate this risk. This investment case approach provides a real-world example of how applied modeling can support national dialog and inform policy planning
    • ā€¦
    corecore