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Background: Parkinson’s disease (PD) is a prevalent neurodegenerative disorder 
that significantly benefits from early diagnosis for effective disease management 
and intervention. Despite advancements in medical technology, there remains 
a critical gap in the early and non-invasive detection of PD. Current diagnostic 
methods are often invasive, expensive, or late in identifying the disease, leading 
to missed opportunities for early intervention.

Objective: The goal of this study is to explore the efficiency and accuracy of 
combining fNIRS technology with machine learning algorithms in diagnosing 
early-stage PD patients and to evaluate the feasibility of this approach in clinical 
practice.

Methods: Using an ETG-4000 type near-infrared brain function imaging 
instrument, data was collected from 120 PD patients and 60 healthy controls. 
This cross-sectional study employed a multi-channel mode to monitor cerebral 
blood oxygen changes. The collected data were processed using a general 
linear model and β values were extracted. Subsequently, four types of machine 
learning models were developed for analysis: Support vector machine (SVM), 
K-nearest neighbors (K-NN), random forest (RF), and logistic regression (LR). 
Additionally, SHapley Additive exPlanations (SHAP) technology was applied to 
enhance model interpretability.

Results: The SVM model demonstrated higher accuracy in differentiating 
between PD patients and control group (accuracy of 85%, f1 score of 0.85, and 
an area under the ROC curve of 0.95). SHAP analysis identified the four most 
contributory channels (CH) as CH01, CH04, CH05, and CH08.

Conclusion: The model based on the SVM algorithm exhibited good diagnostic 
performance in the early detection of PD patients. Future early diagnosis of PD 
should focus on the Frontopolar Cortex (FPC) region.
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1 Introduction

Parkinson’s disease (PD) is a prevalent neurodegenerative disorder 
characterized primarily by motor dysfunction, manifesting symptoms 
such as resting tremors, rigidity, bradykinesia, and postural instability 
(Mazzoni et  al., 2012; Cheng and Su, 2020). As the second most 
common neurodegenerative condition in the elderly, the early 
diagnosis of PD holds paramount importance for timely intervention 
and improving patient quality of life (Aarsland et al., 2021). However, 
the early symptoms of PD can be confounded with other movement 
disorders such as Multiple System Atrophy, drug-induced 
Parkinsonism, and vascular Parkinsonism, making accurate early 
diagnosis a significant challenge (Tolosa et al., 2021). Currently, the 
diagnosis of PD heavily relies on clinical manifestations and the 
judgment of experienced clinicians, a method that may lack sensitivity 
and specificity, particularly in the early stages of the disease (Pahwa 
and Lyons, 2010; Postuma et al., 2015; Adler et al., 2021). An accurate 
and early diagnosis is crucial for paving the way for timely 
interventions, significantly enhancing the patient’s quality of life, and 
decelerating the progression of the disease (Welte et al., 2015).

With the rapid advancement of neuroimaging technologies, 
functional imaging has emerged as an essential tool for diagnosing 
and monitoring neurological disorders (Weiller et  al., 2006). 
Functional near-infrared spectroscopy (fNIRS) stands out as a 
non-invasive, cost-effective, and user-friendly neuroimaging tool, 
showing potential in diagnosing and monitoring various neurological 
conditions (Sun et al., 2018). fNIRS monitors and records changes in 
cerebral blood oxygenation in real-time, reflecting the activity 
dynamics of cortical neurons. Its robust resistance to motion artifacts, 
coupled with superior temporal resolution compared to functional 
magnetic resonance imaging (fMRI) and better spatial resolution 
relative to electroencephalogram (EEG), positions fNIRS as a 
promising tool, particularly in identifying early cognitive impairments 
in PD patients (Oku and Sato, 2021; Pereira et al., 2023; Su et al., 
2023). Current studies utilizing fNIRS have identified differences in 
frontal cortex activation in PD patients during motor tasks compared 
to healthy subjects (Feng et al., 2023).

Moreover, the expanding domain of artificial intelligence offers 
novel opportunities for employing fNIRS in diagnosing clinical 
disorders (Eastmond et al., 2022). Research indicates that machine 
learning algorithms can effectively differentiate various brain activities 
and emotional states based on fNIRS signals, suggesting the potential 
of this technology for early diagnosis and treatment monitoring of 
neurological diseases (Qiu et al., 2022a,b). Additionally, scholars have 

employed machine learning algorithms to unearth latent patterns and 
features in fNIRS data, developing a novel approach to understanding 
brain activity (Andreu-Perez et  al., 2021; Oku and Sato, 2021; 
Eastmond et  al., 2022). These studies contribute significantly to 
advancing neuroscience research and lay the groundwork for future 
clinical applications. However, to date, there has been a paucity of 
literature on constructing early diagnostic models for PD patients 
using fNIRS datasets.

This study pioneers the exploration of the feasibility of using 
fNIRS technology in conjunction with machine learning algorithms 
for the early diagnosis of Parkinson’s Disease. In this context, our 
research aims to evaluate the feasibility and effectiveness of integrating 
fNIRS technology with machine learning algorithms for the early 
diagnosis of PD. By doing so, we strive to fill a critical gap in the 
current diagnostic approach, leveraging the strengths of fNIRS in 
capturing cortical activation patterns and the analytical power of 
machine learning in deciphering complex data. This synergistic 
approach is anticipated to enhance the diagnostic accuracy for PD, 
especially in its early stages, thereby contributing significantly to the 
field of neurology and offering a beacon of hope for those afflicted by 
this debilitating condition.

2 Materials and methods

2.1 Study design and participant selection

This cross-sectional study involved 3 different groups of 
participants, PD-HY01 (Hoehn and Yahr Stage 1) group, PD-HY02 
(Hoehn and Yahr Stage 2) group and control group. Detailed 
demographic and clinical characteristics of the participants are shown 
in Table 1.

2.1.1 Parkinson’s disease patients
In this study, the PD group consists of 120 patients (62 males and 

58 females), all diagnosed with primary Parkinson’s disease by 
neurologists at the Department of Neurology, Beijing Rehabilitation 
Hospital, Capital Medical University. The diagnostic criteria employed 
were rigorously defined in accordance with the Movement Disorder 
Society Clinical Diagnostic Criteria for Parkinson’s Disease. The study 
utilized the modified Hoehn and Yahr (H&Y) staging system. Among 
these patients, sixty are in H&Y stage 1 (27 males, 33 females), and 
sixty are in H&Y stage 2 (35 males, 25 females). Inclusion criteria were 
as follows: (1) Newly diagnosed primary PD patients with no history 

TABLE 1 General characteristics of subjects.

PD-HY01 group PD-HY02 group Control group

Number of people 60 60 60

Age (years) 54.93 ± 3.48 56.83 ± 3.22 57.80 ± 5.41

Male: female 27/33 35/25 31/29

Height (cm) 167.2 ± 4.2 168.2 ± 2.5 168.4 ± 5.4

Body weight (kg) 65.6 ± 3.8 64.8 ± 2.1 64.1 ± 8.3

Duration (weeks) 15.6 ± 5.2 20.9 ± 15.6 /

L-dopa equivalent doses (LEDs) 371.5 ± 159.5 379.1 ± 142.3 /

“/” means no value.
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of other diseases; (2) classified in stages 1–2 of the Hoehn and Yahr 
Scale; (3) Right-handed. Exclusion criteria included: (1) Secondary 
Parkinson’s syndromes; (2) History of cerebrovascular disease, 
neurosurgical operations, or brain tumors; (3) History of alcohol or 
drug dependence. Drop-out criteria were: (1) Occurrence of severe 
adverse events; (2) Failure to complete the testing according to the 
established protocol; (3) Voluntary withdrawal. Additionally, all 
patients were undergoing antiparkinsonian treatment during 
the study.

2.1.2 Control group
The control group consisted of 60 staff members and outpatient 

check-up attendees from Beijing Rehabilitation Hospital, Capital 
Medical University, including 31 males and 29 females, age-matched 
with the PD groups. Exclusion criteria were: (1) Intracranial tumors, 
trauma, or other significant neurological disorders; (2) Major internal 
medical diseases; (3) Inability to complete the fNIRS examination.

2.2 Ethical approval and informed consent

This study was approved by the Ethics Committee of Beijing 
Rehabilitation Hospital, Capital Medical University (ethical approval 
number: 2022bkky-029). All participants provided written informed 
consent prior to their involvement in the study.

2.3 Data acquisition equipment

In this study, data was acquired using the ETG-4000 Optical 
Topography system, a fNIRS device, as shown in Figure  1. This 
equipment utilizes two wavelengths of near-infrared light (695 nm and 
830 nm), delivered to the scalp through transmitting optical fibers and 
received by detecting fibers. The ETG-4000 can continuously measure 
changes in hemoglobin concentration in a multi-channel mode, 
calculating total hemoglobin concentration. In our experiment, 
we used an optode cap to measure the prefrontal cortex region of the 
participants. Customized for brain region specificity, the probe holder 
was equipped with 8 emitting and 7 detecting optodes (3 cm apart), 
forming 15 probes and 22 channels (CH). The channels are 
strategically distributed to cover significant cortical areas: CH01, 
CH05, CH06, CH10 for the Left-Frontopolar Cortex (L-FPC); CH04, 
CH08, CH09, CH13 for the Right-Frontopolar Cortex (R-FPC); 
CH02, CH03, CH07, CH11, CH12, CH16 for the medial Frontopolar 
Cortex (mFPC); CH14, CH15, CH19 for the Left-Dorsolateral 
Prefrontal Cortex (L-DLPFC); CH17, CH18, CH22 for the Right-
Dorsolateral Prefrontal Cortex (R-DLPFC); and CH20, CH21 for 
Brodmann Area 8 (BA8). These regions play crucial roles in cognitive 
functions, decision-making, social cognition, complex problem-
solving, and the integration of information across different brain 
regions. The optode holder securely fixes the transmitting and 
detecting optodes onto the scalp. The sampling frequency was set to 
10 Hz, as depicted in Figure 2.

2.4 Experimental design and data 
collection

The experimental paradigm was based on a Block design, with 
each test cycle including a pre-task phase (10 s of blank screen), resting 
phase (30 s of blank screen), task phase (30 s of task execution), resting 
phase (50 s of blank screen), as illustrated in Figure 3. Data collection 
occurred in a quiet, light-controlled environment. Participants were 
asked to relax for 5 min before the experiment to minimize 
hemodynamic responses caused by prior activities. During the 
experiment, all potential environmental distractions were eliminated, 
and participants were instructed to remain relaxed, avoid unnecessary 
movement or thought, and sit comfortably in a chair, calming 
themselves before the start of the experiment. The ETG-4000 
spectrometer was used to detect invalid channels, and the cap’s 
position and tightness were adjusted until the number of invalid 
channels was reduced to zero or one at most. During the task phase, 
subjects were required to use both hands continuously to complete a 
pegboard task. This task requires subjects to drive nails into the holes 
in the pegboard as quickly and accurately as possible, challenging their 
manual dexterity and coordination. According to recent research from 
institutions such as the University of Florida and Northwestern 
University, the pegboard task could provide objective, reliable data for 
tracking the progression of motor symptoms in Parkinson’s disease 
and atypical Parkinson’s disease (Wilkes et al., 2023). It is a practical, 
cost-effective measure that complements subjective clinical scales and 
expensive imaging techniques, providing a straightforward method 
for assessing efficacy in clinical trials and research. Auditory cues and 
system markers were used to delineate rest and task phases, as 
illustrated in Figure 4.

FIGURE 1

ETG-4000 device.
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2.5 Data processing

To enhance the accuracy and validity of fNIRS test data, 
preprocessing is necessary. A low-pass filter with a cutoff frequency of 
0.1 Hz is used to eliminate physiological noise such as cardiac noise, 

respiratory noise, and Mayer waves. The number of smoothing points 
is set to 5, and the Savitzky–Golay method is applied for data 
smoothing. The average intensity of hemoglobin signal changes in the 
10 s before the start of the task is calculated for baseline correction. 
Channels with evident motion artifacts and poor signal quality are 

FIGURE 2

Optode and probe placement.

FIGURE 3

Experiment design.
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discarded prior to extracting hemodynamic data for analysis. In the 
test, linear regression is employed to fit the data of each channel 
during the stimulation phase to a horizontal line y = β, where β value 
reflects the level of channel activation. The β values of all 22 channels 
are used as inputs for the subsequent diagnostic models, forming a 
feature matrix of 180 × 22. Data processing and extraction are 
conducted using the NIRS_KIT software package (Hou et al., 2021) 
and Matlab (MathWorks, Natick, MA, United  States, R2022b). 
Statistical analysis is performed using SPSS 26.0 statistical software. 
For data that is normally distributed and has homogeneous variances, 
independent sample t-tests are utilized for intergroup comparisons; 
for datasets not adhering to a normal distribution, we  apply 
non-parametric tests, the Mann–Whitney U test, to ensure accurate 
statistical analysis. A significance level of p < 0.05 is set, indicating that 
differences are statistically significant.

2.6 Model building

The dataset matrix is combined with subject categories to form a 
180 × 23 matrix, where the first 22 columns are used as inputs for the 
model, and the last column serves as the output value for model 
training and validation. Subsequently, the dataset undergoes 
standardization processes, including normalization, handling of 
outliers, management of missing values, and feature binarization. Data 
normalization was carried out using the Z-score normalization 
method, which involves subtracting the mean from each feature value 
and dividing by the standard deviation, ensuring that the data are on 
the same scale for easier model processing. Outliers were identified 
and handled using the Interquartile Range (IQR) method. For missing 
data, this study employed a multiple imputation approach to fill in 
missing values, based on the values of other variables, to maintain data 
integrity and minimize the bias that missing data might introduce. 
This study constructs four different diagnostic models to analyze and 
learn the task-state fNIRS data of PD patients: Support Vector 
Machine (SVM), Logistic Regression (LR), Random Forest (RF), and 
K-Nearest Neighbors (K-NN). The selection of machine learning 
models—SVM, K-NN, RF, LR—was strategic, aimed at leveraging 
their unique strengths for robust analysis. SVM was chosen for its 
proficiency in handling high-dimensional data, making it ideal for the 
complex fNIRS signals. K-NN’s simplicity and effectiveness in 
classification tasks complemented this approach, offering intuitive 

insights into data grouping. RF’s ensemble learning method was 
employed to mitigate overfitting risks, enhancing model 
generalizability. Lastly, LR was included for its transparent decision-
making process, allowing straightforward interpretation of results. 
This multifaceted approach ensured a comprehensive analysis, 
underpinning our study’s methodological rigor. The hyperparameters 
for these four models are detailed in Table 2.

The study employs data splitting and cross-validation methods. 
The dataset is divided into a training set comprising 70% of the data 
and a validation set comprising 30%. The training set is used for 
model learning and tuning, while the validation set is used to assess 
the model’s performance and accuracy. To enhance the robustness and 
stability of the model evaluation, a 10-fold cross-validation method is 
applied. The training set is evenly divided into 10 subsets, and in each 
experiment, one subset is used as the validation set, while the 
remaining nine subsets are used for training the model. This process 
is repeated 10 times, giving each subset a chance to be used as the 
validation set. This method reduces the impact of randomness on 
model performance assessment, improving the stability and reliability 
of the results. Upon completion of the 10-fold cross-validation, the 
average of the 10 iterations was calculated, including accuracy, 
sensitivity, and specificity.

For a comprehensive evaluation of model performance, this study 
includes the calculation of confusion matrices and Receiver Operating 

FIGURE 4

Histogram of data set distribution.

TABLE 2 Hyperparameters of each algorithm model.

Algorithm Hyperparameters

LR C: 10

solver: liblinear

SVM C: 10

gamma: scale

kernel: rbf

RF n_estimators: 50

max_depth: None

min_samples_split: 10

K-NN n_neighbors: 5

weights: uniform

algorithm: kd_tree
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Characteristic (ROC) curves. The confusion matrix provides detailed 
information about true positives, false positives, true negatives, and 
false negatives, aiding in understanding the model’s performance in 
differentiating between categories (Olivetti et al., 2015). The ROC 
curve, its “Area Under the Curve” (AUC), and the F1 score provide 
quantitative measures of a model’s overall performance and are vital 
tools for assessing classifier efficacy. These metrics are extensively 
utilized as comprehensive evaluation indicators in various diagnostic 
models. The ROC curve plots the true positive rate against the false 
positive rate at various threshold settings, enabling the visualization 
of a classifier’s performance across different thresholds. The AUC 
represents the degree to which the model can distinguish between 
classes; a higher AUC value indicates better model performance. The 
F1 score, a harmonic mean of precision and recall, is particularly 
useful in situations where an even balance between false positives and 
false negatives is critical. It is a single metric that combines the 
sensitivity and precision of the classifier, offering a balanced view of 
its performance, especially in cases of imbalanced datasets. These tools 
are integral in providing a holistic assessment of the classifier’s 
accuracy and reliability in diagnostic models.

2.7 Interpretability techniques

To enhance the interpretability of the model, particularly when 
dealing with black-box models, this study employs SHAP (SHapley 
Additive exPlanations) technology. SHAP is a method for explaining 
machine learning model predictions, aiding in understanding the 
contributions of different features to the model’s decision-making 
process and predictive outcomes (Stenwig et  al., 2022). The core 
concept of SHAP is based on Shapley values from cooperative game 
theory, which decompose the influence of each feature into a degree 
of contribution to the prediction, thereby determining the importance 
of each feature for the final predictive outcome (Rodriguez-Perez and 
Bajorath, 2020). This approach enables the identification of features 
that have a positive or negative impact on the model’s output and their 
relative contribution, which is of significant value for further 
improvements to the diagnostic model (Park et al., 2021). The model 
construction process is completed using Python 3.11.

3 Results

3.1 Dataset distribution

After preprocessing the dataset, a balanced distribution of data 
can be observed, as shown in Figure 5. The data within channels CH01 
to CH22 exhibit uniformity and tend towards a normal distribution. 
This indicates that the distribution of attributes and labels within the 
dataset is relatively stable, without significant biases or imbalances.

3.2 Model predictions

The performance results of the four different predictive models 
are presented in Table 3. Overall, each model demonstrates certain 
capabilities in classifying fNIRS data, but the SVM algorithm shows 
superior overall performance, characterized by higher accuracy and 

reliability. Specifically, the SVM algorithm achieves an Accuracy of 
85% and an F1 score of 0.85. Regarding the AUC, the best SVM model 
scores 0.99 for the control group, 0.96 for PD patients in H&Y stage 1, 
and 0.97 for those in H&Y stage 2, as illustrated in Figures 6, 7.

3.3 SHAP interpretability results

Interestingly, the application of SHAP technology for interpreting 
the four models reveals that channels CH01, CH04, CH05, and CH08 
contribute most significantly to the model’s predictions, as visualized 
in Figures 8–11. These channels are located in the FPC region. This 
finding indicates that there is a difference in FPC activity between the 
two groups during task execution (specifically, a pegboard task using 
the dominant hand). This difference may suggest that the pattern of 
brain activity in PD patients during cognitive tasks is distinct from 
that of healthy participants.

4 Discussion

The early diagnosis of PD is paramount for effective patient 
management and prognosis, presenting a significant challenge 
within the medical diagnostic realm (Tolosa et al., 2021). Early 
detection not only significantly enhances disease management and 
treatment outcomes but also mitigates symptoms and decelerates 
disease progression (Pahwa and Lyons, 2010). PD is principally 
characterized by the progressive degeneration of neurons in the 
substantia nigra pars compacta, manifesting a range of motor and 
non-motor symptoms (Aarsland et al., 2021). The subtlety and lack 
of specificity of early symptoms often lead to the failure of 
traditional clinical diagnostic methods in accurately identifying 
PD at its onset (Adler et al., 2021). Presently, the diagnosis of early-
stage PD heavily depends on medical observation and the 
assessment of clinical symptoms. However, these conventional 
approaches are susceptible to subjectivity, potentially culminating 
in misdiagnoses (Tolosa et al., 2021). The swift advancement of 
brain imaging technologies, including non-invasive techniques 
such as Positron Emission Tomography (PET), fMRI, and EEG, has 
led to their increased integration in detecting PD (Pagano et al., 
2016). Concurrently, the evolution of artificial intelligence and 
pattern recognition technologies has rendered computer-assisted 
diagnostic tools indispensable in the early diagnosis of PD (Ripic 
et  al., 2023). Despite the promise shown by the integration of 
advanced ML or DL algorithms with EEG signals, which exhibit 
marked differences in brain activation and functional connectivity 
between PD patients and healthy controls, several domains warrant 
further investigation to overcome the challenges of single-modality 
data reliance and the opaque nature of decision-making processes 
in current PD diagnostic models. Notably, most studies gather data 
with patients at rest, omitting motion or function-related data. This 
omission is significant as rehabilitation medicine, unlike clinical 
medicine, prioritizes functional impairments (Hudson, 2020). 
Moreover, the reliance on single-modality data in previous studies 
may limit a comprehensive understanding of task-state brain 
functional characteristics in PD patients (Makarious et al., 2022). 
Furthermore, the opacity of decision-making processes in current 
PD diagnostic models—the so-called “black box” effect—is 
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notable. Although numerous ML and DL frameworks show 
promise in PD detection, a lack of model interpretability impedes 
understanding the diagnostic rationale, thereby hindering clinical 
application (Cruz et al., 2023).

In recent decades, the use of fNIRS in cognitive neuroscience 
has surged, benefiting from its advantages over other neuroimaging 
modalities like fMRI and EEG/MEG (Su et  al., 2023). Notably, 
fNIRS is harmless, highly tolerant to physical movement, and 
extremely portable, making it suitable for all potential participant 
groups and experimental settings, both in and out of the laboratory 
(Grama et  al., 2023). Exploring the combination of fNIRS with 
machine learning algorithms for early PD diagnosis represents a 
novel approach in the field of neurodegenerative disease diagnostics 

(Oku and Sato, 2021). In our study, the SVM model demonstrated 
excellent performance in differentiating PD patients from control 
group, with an accuracy of 85% and an F1 score of 0.85, highlighting 
its diagnostic accuracy. These results are consistent with previous 
studies, emphasizing the need for innovative non-invasive 
diagnostic methods for early PD detection (Krokidis et al., 2022). 
Moreover, SVM models have emerged as potent instruments in 
biomedical research, especially in classification and regression tasks 
involving high-dimensional data. The models’ capacity to identify 
the optimal hyperplane that maximizes the margin between classes 
in the feature space is crucial for precise prediction and classification 
in complex biomedical datasets (Cortes and Vapnik, 1995; Lundberg 
and Lee, 2017). Such a fundamental characteristic of SVMs 

FIGURE 5

Participant testing procedure.

TABLE 3 Performance results of different classifiers.

Model Accuracy F1 Score AUC

Logistic regression 0.82 ± 0.02 0.83 ± 0.03 0.83 ± 0.04

Support vector machine 0.85 ± 0.02 0.85 ± 0.01 0.95 ± 0.03

Random forest 0.79 ± 0.06 0.75 ± 0.05 0.89 ± 0.04

K-Nearest neighbors 0.73 ± 0.11 0.68 ± 0.12 0.81 ± 0.87
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facilitates the handling of the nuances in neuroimaging data, 
where distinguishing between healthy individuals and patients 
with neurological disorders, like PD, is often subtle and 
embedded within extensive datasets. The deployment of SVM 
models in neuroimaging data analysis has significantly propelled 
the field of disease diagnosis forward, offering a non-invasive and 
efficient means to early detect and differentiate neurological 
conditions. For example, neuroimaging techniques such as 
functional MRI and structural MRI produce voluminous data 
that encapsulates the functional and structural aspects of the 
brain. Analyzing this data with SVM enables the identification of 
patterns and biomarkers associated with diseases like PD, 
Alzheimer’s Disease, and schizophrenia, among others (Orrù 
et al., 2012; Steardo et al., 2020).

Within the PD context, SVM models have played a pivotal role 
in differentiating between PD patients and control group by 
analyzing fNIRS data for subtle changes imperceptible to the 

human eye. This capability is essential for the early diagnosis of PD, 
where timely intervention can significantly influence disease 
management and progression. Studies employing SVM models in 
conjunction with neuroimaging data have demonstrated high 
diagnostic accuracy and specificity, highlighting the models’ 
efficacy in biomedical applications (Buchlak et al., 2019). The SVM 
model’s high accuracy and F1 score further validate the 
effectiveness of machine learning methods in managing complex 
biomedical data.

One significant hurdle in utilizing machine learning models 
is their inherent “black box” nature, which obscures the decision-
making process (Rudin, 2019). Addressing this, the 
implementation of interpretability techniques emerges as essential. 
Technologies such as SHAP play a pivotal role in demystifying the 
logic behind model predictions. Rooted in cooperative game 
theory, SHAP offers a comprehensive framework to elucidate any 
machine learning model’s output by assigning an importance value 

FIGURE 6

ROC results for each classifier curve.
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to each feature for a given prediction. This approach not only 
clarifies how predictive models function but also facilitates the 
discovery of biomarkers and critical attributes relevant to 
conditions like PD (Noble, 2006). Applying SHAP to SVM models, 
particularly in neuroimaging data analysis, represents a significant 
advancement towards unraveling the intricate biological and 
pathological phenomena underlying diseases. For instance, in PD 
diagnostics, SHAP values can identify brain regions and signals 
crucial for distinguishing PD patients from healthy controls, 
offering insights that not only improve model transparency but 
also guide further research and targeted therapeutic strategies 
(Molnar, 2020).

Specifically, during cognitive tasks, the notable influence of 
channels CH01, CH04, CH05, and CH08  in FPC indicates a 
deviation in brain activation patterns in PD patients relative to 
healthy individuals. This observation is instrumental in dissecting 
the neural mechanisms of PD, potentially shaping the development 
of precise therapies or interventions. The FPC’s integral role in 

high-level cognitive functions, such as decision-making, problem-
solving, and social cognition, underscores its significance in 
complex cognitive processes, rendering it a vital focus for 
neurodegenerative disease research. Its strategic relevance is 
amplified by its connectivity with diverse brain networks, 
facilitating the integration of cognitive and emotional data to 
influence behavior and decision-making (Gilbert et  al., 2006; 
Burgess et al., 2007). Concentrating on the FPC might shed light 
on the early cognitive and neural alterations linked to PD, 
extending the focus beyond conventional motor symptoms. Prior 
studies have emphasized the FPC’s role in cognitive functionalities 
and its potential alterations due to PD pathology (Goldman et al., 
2018; Aarsland et  al., 2021). Investigating the FPC’s role in 
executive functions could reveal how PD impacts brain regions 
tasked with high-order cognitive processes, significantly enriching 
our understanding of the disease’s progression and its impact on 
patient quality of life (Daffner, 2010). The emphasis on the FPC in 
future research is warranted not merely due to its pivotal role in 

FIGURE 7

Confusion matrix results for each classifier.
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cognitive functions and decision-making but also for its potential 
to deepen our understanding of PD. Such targeted research 
promises to broaden diagnostic, therapeutic, and rehabilitative 
approaches, significantly refining PD management strategies. By 
exploring the FPC’s involvement more thoroughly, we can discover 
new avenues for early diagnosis, personalized medicine, and 

targeted interventions, ultimately enhancing PD patients’ 
prognosis and quality of life. Moreover, network analyses 
employing resting-state functional MRI (rs-fMRI) are increasingly 
utilized in PD patient studies to identify and substantiate 
neurodegenerative disease associations (Albano et al., 2022). These 
networks serve not only as markers for disease processes but also 

FIGURE 8

K-Nearest neighbors SHAP summary plot.

FIGURE 11

Random forest SHAP summary plot.
FIGURE 9

SVM SHAP summary plot.

FIGURE 10

Logistic regression SHAP summary plot.
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as supplementary tools for clinical diagnosis and therapeutic trial 
screenings (Filippi et  al., 2019). A study that applied SHAP in 
interpreting SVM-based neuroimaging analysis for PD 
underscored the FPC’s substantial role, offering a profound insight 
into the disease’s neuroanatomical foundations. Such 
interpretability is vital for bridging the gap between machine 
learning predictions and clinical decision-making, enabling a more 
informed and nuanced approach to disease diagnosis and 
management (Rodriguez-Perez and Bajorath, 2020).

Despite its advantages, the application of SHAP in enhancing 
the interpretability of SVM models in biomedical research is not 
devoid of challenges. The computational complexity of calculating 
SHAP values, especially for large datasets common in neuroimaging 
studies, poses a significant hurdle. Additionally, while SHAP 
provides a more intuitive understanding of model predictions, 
translating these insights into actionable clinical strategies requires 
careful consideration and further validation. Future research 
should focus on developing more efficient algorithms for 
computing SHAP values and exploring methods to integrate these 
interpretations into clinical workflows seamlessly. Moreover, the 
potential of SHAP to uncover novel biomarkers and therapeutic 
targets warrants further exploration, with interdisciplinary 
collaboration between computer scientists, biologists, and 
clinicians being pivotal for leveraging these insights to improve 
patient care.

Despite encouraging results, early PD diagnosis remains a 
complex and evolving field. The non-specific nature of early PD 
symptoms and the lack of reliable biomarkers contribute to this 
complexity (Ma et  al., 2023). This study highlights fNIRS’s 
potential in identifying distinct cerebral blood flow patterns 
between PD patients and control group, underlining its promise 
as an objective indicator for early PD diagnosis. Yet, it’s crucial 
to clarify that our findings primarily suggest the potential utility 
of fNIRS, rather than definitively establishing its diagnostic 
capability. Further research is necessary to validate fNIRS as a 
reliable diagnostic tool for PD, emphasizing the need for 
integrating it with other diagnostic modalities and exploring 
larger, more diverse datasets. We  must also acknowledge 
limitations in our study, such as potential biases in sample 
selection and unconsidered variables like lifestyle and genetic 
factors that may affect fNIRS data and diagnostic accuracy. 
Future research should focus on refining these diagnostic 
procedures, considering a wider range of machine learning 
models and larger datasets to improve the accuracy and reliability 
of early PD diagnosis.

5 Conclusion

In conclusion, this study paves the way for future research to 
explore more comprehensive machine learning models and 
integrate larger, more diverse datasets. Advances in neuroimaging 
and machine learning hold great promise for improving early PD 
diagnosis, potentially leading to better patient outcomes and more 
effective management strategies. Future research must also address 
the potential biases and unconsidered variables identified in this 
study to develop more robust diagnostic models.
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