259 research outputs found

    Does ESG investment reduce carbon emissions in China?

    Get PDF
    This study explores the relationship between ESG investments and carbon emissions in China. Our results show that 1% increase in environmental investments would cause 0.246% decrease in CO2 emissions and 0.558% decrease in carbon emission intensity. The impact of ESG investment is heterogeneous across the developed and underdeveloped regions. Environmental investments in the advanced eastern region have significantly improved carbon productivity. In contrast, environmental investments in the central and western regions significantly reduced carbon emissions, but they have little impact on carbon productivity

    Real-time Management of groundwater resource based on wireless sensor networks

    Get PDF
    Groundwater plays a vital role in the arid inland river basins, in which the groundwater management is critical to the sustainable development of area economy and ecology. Traditional sustainable management approaches are to analyze different scenarios subject to assumptions or to construct simulation–optimization models to obtain optimal strategy. However, groundwater system is time-varying due to exogenous inputs. In this sense, the groundwater management based on static data is relatively outdated. As part of the Heihe River Basin (HRB), which is a typical arid river basin in Northwestern China, the Daman irrigation district was selected as the study area in this paper. First, a simulation–optimization model was constructed to optimize the pumping rates of the study area according to the groundwater level constraints. Three different groundwater level constraints were assigned to explore sustainable strategies for groundwater resources. The results indicated that the simulation–optimization model was capable of identifying the optimal pumping yields and satisfy the given constraints. Second, the simulation–optimization model was integrated with wireless sensors network (WSN) technology to provide real-time features for the management. The results showed time-varying feature for the groundwater management, which was capable of updating observations, constraints, and decision variables in real time. Furthermore, a web-based platform was developed to facilitate the decision-making process. This study combined simulation and optimization model with WSN techniques and meanwhile attempted to real-time monitor and manage the scarce groundwater resource, which could be used to support the decision-making related to sustainable management

    Critical role of FGF21 in diabetic kidney disease: from energy metabolism to innate immunity

    Get PDF
    Diabetic kidney disease (DKD) stands as the predominant cause of chronic kidney disease (CKD) on a global scale, with its incidence witnessing a consistent annual rise, thereby imposing a substantial burden on public health. The pathogenesis of DKD is primarily rooted in metabolic disorders and inflammation. Recent years have seen a surge in studies highlighting the regulatory impact of energy metabolism on innate immunity, forging a significant area of research interest. Within this context, fibroblast growth factor 21 (FGF21), recognized as an energy metabolism regulator, assumes a pivotal role. Beyond its role in maintaining glucose and lipid metabolism homeostasis, FGF21 exerts regulatory influence on innate immunity, concurrently inhibiting inflammation and fibrosis. Serving as a nexus between energy metabolism and innate immunity, FGF21 has evolved into a therapeutic target for diabetes, nonalcoholic steatohepatitis, and cardiovascular diseases. While the relationship between FGF21 and DKD has garnered increased attention in recent studies, a comprehensive exploration of this association has yet to be systematically addressed. This paper seeks to fill this gap by summarizing the mechanisms through which FGF21 operates in DKD, encompassing facets of energy metabolism and innate immunity. Additionally, we aim to assess the diagnostic and prognostic value of FGF21 in DKD and explore its potential role as a treatment modality for the condition

    Author Correction: The disease resistance protein SNC1 represses the biogenesis of microRNAs and phased siRNAs.

    Get PDF
    The original version of this Article contained an error in the spelling of the author Beixin Mo, which was incorrectly given as Beixing Mo. This has now been corrected in both the PDF and HTML versions of the Article

    Reliability Evaluation of NC Machine Tools considering Working Conditions

    Get PDF
    Reliability evaluation is the basis for reliability design of NC machine tools. Since traditional reliability evaluation methods do not consider the working conditions' effects on reliability, there is a great error of a result of a traditional method compared with an actual value. A new reliability evaluation model of NC machine tools is proposed based on the Cox proportional hazards model, which describes the mathematical relation between the working condition covariates and the reliability level of NC machine tools. Firstly, the coefficients of working condition covariates in the new reliability evaluation model are estimated by the partial likelihood estimation method; secondly, the working condition covariates which have no effects on the reliability of NC machine tools are eliminated by the likelihood ratio test; then parameters of the baseline failure rate function are estimated by the maximum likelihood estimation method. Thus, the reliability evaluation model of NC machine tool is obtained under different working conditions and the reliability level of NC machine tools is obtained. Case study shows that the proposed method could establish the relation between the working condition covariates and the reliability level of NC machine tools, and it would provide a new way for the reliability evaluation of NC machine tools

    Influence of Cell Spreading Area on the Osteogenic Commitment and Phenotype Maintenance of Mesenchymal Stem Cells

    Get PDF
    Osteogenic differentiation and commitment of mesenchymal stem cells (MSCs) is a complex process that is induced and regulated by various biological factors and biophysical cues. Although cell spreading area, as a biophysical cue, has been demonstrated to play a critical role in the regulation of osteogenic differentiation of MSCs, it is unclear how it affects the maintenance of the committed phenotype after osteogenic differentiation of MSCs. In this study, poly (vinyl alcohol) was micropatterned on a tissue culture polystyrene surface, and the micropatterns were used to culture MSCs to control their cell spreading area. The influence of cell spreading area on osteogenic differentiation and maintenance of the differentiated phenotype of MSCs was investigated. MSCs with a larger spreading area showed a higher degree of osteogenic differentiation, slower loss of differentiated phenotype and slower re-expression of stem cell markers compared with MSCs with a smaller spreading area. A large cell spreading area was beneficial for osteogenic differentiation of MSCs and maintenance of their differentiated phenotype

    Protection Evaluation of a Five-Gene-Deleted African Swine Fever Virus Vaccine Candidate Against Homologous Challenge

    Get PDF
    African swine fever virus (ASFV) represents a serious threat to the global swine industry, and there are no safe or commercially available vaccines. Previous studies have demonstrated that inactivated vaccines do not provide sufficient protection against ASFV and that attenuated vaccines are effective, but raise safety concerns. Here, we first constructed a deletion mutant in which EP153R and EP402R gene clusters were knocked out. Based on the deletion mutant, a further deletion from the MGF_360-12L, MGF_360-13L to MGF_360-14L genes was obtained. The five-genes knockout virus was designated as ASFV-ΔECM3. To investigate the efficacy and safety of the ASFV-ΔECM3 virus as a vaccine candidate, the evaluation of the virus was subsequently carried out in pigs. The results showed that the ASFV-ΔECM3 virus could induce homologous protection against the parental isolate, and no significant clinical signs or viremia were observed. These results show that the contiguous deletion mutant, ASFV-ΔECM3 encompassing the EP153R/EP402R and MGF_360-12L/13L/14L genes, could be a potential live-attenuated vaccine candidate for the prevention of ASFV infection

    A common Shox2–Nkx2-5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node

    Get PDF
    In humans, atrial fibrillation is often triggered by ectopic pacemaking activity in the myocardium sleeves of the pulmonary vein (PV) and systemic venous return. The genetic programs that abnormally reinforce pacemaker properties at these sites and how this relates to normal sinoatrial node (SAN) development remain uncharacterized. It was noted previously that Nkx2-5, which is expressed in the PV myocardium and reinforces a chamber-like myocardial identity in the PV, is lacking in the SAN. Here we present evidence that in mice Shox2 antagonizes the transcriptional output of Nkx2-5 in the PV myocardium and in a functional Nkx2-5(+) domain within the SAN to determine cell fate. Shox2 deletion in the Nkx2-5(+) domain of the SAN caused sick sinus syndrome, associated with the loss of the pacemaker program. Explanted Shox2(+) cells from the embryonic PV myocardium exhibited pacemaker characteristics including node-like electrophysiological properties and the capability to pace surrounding Shox2(−) cells. Shox2 deletion led to Hcn4 ablation in the developing PV myocardium. Nkx2-5 hypomorphism rescued the requirement for Shox2 for the expression of genes essential for SAN development in Shox2 mutants. Similarly, the pacemaker-like phenotype induced in the PV myocardium in Nkx2-5 hypomorphs reverted back to a working myocardial phenotype when Shox2 was simultaneously deleted. A similar mechanism is also adopted in differentiated embryoid bodies. We found that Shox2 interacts with Nkx2-5 directly, and discovered a substantial genome-wide co-occupancy of Shox2, Nkx2-5 and Tbx5, further supporting a pivotal role for Shox2 in the core myogenic program orchestrating venous pole and pacemaker development
    • …
    corecore