17 research outputs found

    Carbonaceous electrode materials for supercapacitor: Preparation and surface functionalization

    Get PDF
    Supercapacitors became more and more important recently in the area of energy storage and conversion. Their large power deliveries abilities, high stability and environmental friendliness characteristics draw tremendous attention in high-power applications such as public transit networks. Carbonaceous materials with unique surface and electrochemical properties were widely used in supercapacitors as electrode materials. This review focuses on the developments in supercapacitor electrodes made from carbonaceous materials recently, their working principle and evaluation parameters were summarized briefly. The preparation methods and electrochemical properties of different carbonaceous materials were compared and classified. It was found that the surface situation (e.g., porous structure, hydrophilic) of carbonaceous materials strongly affect the electrochemical performances of supercapacitor. So far, active carbons would be the most applicable carbonaceous electrode materials owing to their good chemical stability and conductivity, extensive accessibility inexpensiveness. But their energy densities still fall behind practical demands. Both theoretical calculations and experimental studies show that surface modification and doping of carbonaceous materials can not only optimize their pore size, structure, conductivity and surface properties, but also can introduce extra pseudocapacitance into these materials. Considering global environmental pollution and energy shortage problems nowadays, we sincerely suggested that future work should focus on domestic, medical and industrial wastes residues derived carbonaceous materials and scaled production process such as reactors and exhaust gas treatment

    Predictive Modeling and Analysis of Material Removal Characteristics for Robotic Belt Grinding of Complex Blade

    No full text
    High-performance grinding has been converted from traditional manual grinding to robotic grinding over recent years. Accurate material removal is challenging for workpieces with complex profiles. Over recent years, digital processing of grinding has shown its great potential in the optimization of manufacturing processes and operational efficiency. Thus, quantification of the material removal process is an inevitable trend. This research establishes a three-dimensional model of the grinding workstation and designs the blade back arc grinding trajectory. A prediction model of the blade material removal depth (MRD) is established, based on the Adaptive Neuro-Fuzzy Inference System (ANFIS). Experiments were carried out using the Taguchi method to investigate how certain elements might affect the outcomes. An Analysis of Variance (ANOVA) was used to study the effect of abrasive belt grinding characteristics on blade material removal. The mean absolute percent error (MAPE) of the established ANFIS model, after training and testing, was 3.976%, demonstrating superior performance to the reported findings, which range from 4.373% to 7.960%. ANFIS exhibited superior outcomes, when compared to other prediction models, such as random forest (RF), artificial neural network (ANN), and support vector regression (SVR). This work can provide some sound guidance for high-precision prediction of material removal amounts from surface grinding of steam turbine blades

    Removal of vanadium from vanadium-containing wastewater by amino modified municipal sludge derived ceramic

    No full text
    In this work, an amino modified porous ceramic derived from municipal sludge was synthesized for the adsorption of vanadium (V) from wastewater. In this approach, a maximum vanadium (V) removal of 99.8% can be achieved by using 800 g adsorbent with a height of 800 mm when the initial concentration of vanadium (V) was 50 mg/L, pH was 4, flow rate was 5 L/h. Keywords: Amino modified, Ceramic, Vanadium, Adsorptio

    Associations between neutrophil-lymphocyte ratio and monocyte to high-density lipoprotein ratio with left atrial spontaneous echo contrast or thrombus in patients with non-valvular atrial fibrillation

    No full text
    Abstract Background The importance of inflammation in thrombosis is increasingly appreciated. Neutrophil-lymphocyte ratio (NLR) and monocyte to high-density lipoprotein ratio (MHR) are important indicators of systemic inflammation. This study aimed to investigate the associations between NLR and MHR with left atrial appendage thrombus (LAAT) and spontaneous echo contrast (SEC) in patients with non-valvular atrial fibrillation. Methods This retrospective, cross-sectional study enrolled 569 consecutive patients with non-valvular atrial fibrillation. Multivariable logistic regression analysis was used to investigate independent risk factors of LAAT/SEC. Receiver operating characteristic (ROC) curves were used to evaluate the specificity and sensitivity of NLR and MHR in predicting LAAT/SEC. Subgroup and Pearson correlation analyses were used to assess the correlations between NLR and MHR with the CHA2DS2-VASc score. Results Multivariate logistic regression analysis showed that NLR (OR: 1.49; 95%CI: 1.173–1.892) and MHR (OR: 2.951; 95%CI: 1.045–8.336) were independent risk factors for LAAT/SEC. The area under the ROC curve of NLR (0.639) and MHR (0.626) was similar to that of the CHADS2 score (0.660) and CHA2DS2-VASc score (0.637). Subgroup and Pearson correlation analyses showed significant but very weak associations between NLR (r = 0.139, P < 0.05) and MHR (r = 0.095, P < 0.05) with the CHA2DS2-VASc score. Conclusion Generally, NLR and MHR are independent risk factors for predicting LAAT/SEC in patients with non-valvular atrial fibrillation

    Table1_A pilot clinical assessment of biphasic asymmetric pulsed field ablation catheter for pulmonary vein isolation.docx

    No full text
    Pulsed field ablation (PFA) is a new treatment for atrial fibrillation (AF), and its selective ablation characteristics give it a significant advantage in treatment. In previous cellular and animal experiments, we have demonstrated that biphasic asymmetric pulses can be used to ablate myocardial tissue. However, small-scale clinical trials are needed to test whether this approach is safe and feasible before extensive clinical trials can be performed. Therefore, the purpose of this experiment is to determine the safety and feasibility of biphasic asymmetric pulses in patients with AF and is to lay the foundation for a larger clinical trial. Ablation was performed in 10 patients with AF using biphasic asymmetric pulses. Voltage mapping was performed before and after PFA operation to help us detect the change in the electrical voltage of the pulmonary veins (PV). 3-Dimensional mapping system showed continuous low potential in the ablation site, and pulmonary vein isolation (PVI) was achieved in all four PV of the patients. There were no recurrences, PV stenosis, or other serious adverse events during the 12 months follow-up. The results suggest that PFA using biphasic asymmetric waveforms for patients with AF is safe, durable, and effective and that a larger clinical trial could begin. Clinical Trial Registrationhttps://www.chictr.org.cn/, identifier, ChiCTR2100051894.</p

    Tumor Angiogenesis Targeted Radiosensitization Therapy Using Gold Nanoprobes Guided by MRI/SPECT Imaging

    No full text
    Gold nanoparticles (AuNPs) have recently garnered great interest as potential radiosensitizers in tumor therapy. However, major challenges facing their application in this regard are further enhancement of tumor accumulation of the particles in addition to enhanced permeability retention (EPR) effect and an understanding of the optimal particle size and time for applying radiotherapy after the particle administration. In this study, we fabricated novel cyclic c­(RGDyC)-peptide-conjugated, Gd- and 99 mTc-labeled AuNPs (RGD@AuNPs-Gd99 mTc) probes with different sizes (29, 51, and 80 nm) and evaluated their potential as radiosensitization therapy both <i>in vitro</i> and <i>in vivo</i>. We found that these probes have a high specificity for <i>αvβ3</i> integrin positive cells, which resulted in their high cellular uptake and thereby enhanced radiosensitization. Imaging <i>in vivo</i> with MRI and SPECT/CT directly showed that the RGD@AuNPs-Gd99 mTc probes specifically target tumors and exhibit greater accumulation within tumors than the RAD@AuNPs-Gd99 mTc probes. Interestingly, we found that the 80 nm RGD@AuNPs-Gd99 mTc probes exhibit the greatest effects <i>in vitro</i>; however, the 29 nm RGD@AuNPs-Gd99 mTc probes were clearly most efficient <i>in vivo</i>. As a result, radiotherapy of tumors with the 29 nm probe was the most potent. Our study demonstrates that RGD@AuNPs-Gd99 mTc probes are highly useful radiosensitizers capable of guiding and enhancing radiation therapy of tumors
    corecore