197 research outputs found

    A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: Physiochemistry and in vivo osteogenesis

    Get PDF
    Mesoporous bioactive glass (MBG) is a new class of biomaterials with a well-ordered nanochannel structure, whose in vitro bioactivity is far superior than that of non-mesoporous bioactive glass (BG); the material's in vivo osteogenic properties are, however, yet to be assessed. Porous silk scaffolds have been used for bone tissue engineering, but this material's osteoconductivity is far from optimal. The aims of this study were to incorporate MBG into silk scaffolds in order to improve their osteoconductivity and then to compare the effect of MBG and BG on the in vivo osteogenesis of silk scaffolds. MBG/silk and BG/silk scaffolds with a highly porous structure were prepared by a freeze-drying method. The mechanical strength, in vitro apatite mineralization, silicon ion release and pH stability of the composite scaffolds were assessed. The scaffolds were implanted into calvarial defects in SCID mice and the degree of in vivo osteogenesis was evaluated by microcomputed tomography (μCT), hematoxylin and eosin (H&E) and immunohistochemistry (type I collagen) analyses. The results showed that MBG/silk scaffolds have better physiochemical properties (mechanical strength, in vitro apatite mineralization, Si ion release and pH stability) compared to BG/silk scaffolds. MBG and BG both improved the in vivo osteogenesis of silk scaffolds. μCT and H&E analyses showed that MBG/silk scaffolds induced a slightly higher rate of new bone formation in the defects than did BG/silk scaffolds and immunohistochemical analysis showed greater synthesis of type I collagen in MBG/silk scaffolds compared to BG/silk scaffolds

    CaSiO3 microstructure modulating the in vitro and in vivo bioactivity of poly(lactide-co-glycolide) microspheres

    Get PDF
    Poly (lactide-co-glycolide) (PLGA) microspheres have been used for regenerative medicine due to their ability for drug delivery and generally good biocompatibility, but they lack adequate bioactivity for bone repair application. CaSiO3 (CS) has been proposed as a new class of material suitable for bone tissue repair due to its excellent bioactivity. In this study, we set out to incorporate CS into PLGA microspheres to investigate how the phase structure (amorphous and crystal) of CS influences the in vitro and in vivo bioactivity of the composite microspheres, with a view to the application for bone regeneration. X-ray diffraction (XRD), N2 adsorption-desorption analysis and scanning electron microscopy (SEM) were used to analyze the phase structure, surface area/pore volume, and microstructure of amorphous CS (aCS) and crystal CS (cCS), as well as their composite microspheres. The in vitro bioactivity of aCS and cCS – PLGA microspheres was evaluated by investigating their apatite-mineralization ability in simulated body fluids (SBF) and the viability of human bone mesenchymal stem cells (BMSCs). The in vivo bioactivity was investigated by measuring their de novo bone-formation ability. The results showed that the incorporation of both aCS and cCS enhanced the in vitro and in vivo bioactivity of PLGA microspheres. cCS/PLGA microspheres improved better in vitro BMSC viability and de novo bone-formation ability in vivo, compared to aCS/PLGA microspheres. Our study indicates that controlling the phase structure of CS is a promising method to modulate the bioactivity of polymer microsphere system for potential bone tissue regeneration

    The Effect of Calcium and Phosphorous on Growth, Feed Efficiency, Mineral Content and Body Composition of Brown Marbled Grouper (Epinephelus Fuscoguttatus) Juvenile

    Full text link
    The objectives of this study were to know concentration of calcium (Ca) and posphorus (P) in feed for growth, feed efficiency, proximate composition of the body and mineral content of brown marbled grouper juvenile. The study was conducted in the Center for Brackiswater Aquaculture Development, Takalar with randomized completed design 6 x 3 with the treatment of Ca and P supplement in feed i.e., (A) the supplement of 0 g/kg Ca and 0 g/kg P, (B) the supplement of 6 g/kg Ca and 0 g/kg P, (C) the supplement of 0 g/kg Ca and 6 g/kg P, (D) the supplement of 6 g/kg Ca and 6 g/kg P, (E) the supplement of 12 g/kg Ca and 6 g/kg P, and (F) the supplement of 18 g/kg Ca and 6 g/kg P. The result showed that P supplement with doses of 6 g/kg and Ca of 0 g/kg in feed are significantly affects on relative growth, feed efficiency, proximate composition and mineral content of brown marbled grouper juvenile

    Bioceramic micro-fillers reinforce antibiofilm and remineralization properties of clear aligner attachment materials

    Get PDF
    Introduction: Clear aligners, while offering a more hygienic alternative to fixed appliances, are still associated with challenges including plaque accumulation and enamel demineralization. The aim of the present study was to investigate the antibiofilm and remineralization effectiveness of innovative flowable composite attachments containing bioceramic micro-fillers.Methods: Four experimental attachments were formulated and bonded to human enamel specimens: 3M Filtek Supreme flowable composite (Filtek SF) + 10% bioactive glass 45S5 (BAG), Filtek SF + 30% BAG, Filtek SF + 10% Bredigite (BRT), Filtek SF + 30% BRT. Plaque biofilms were grown on the bonded enamel using a standardized protocol and the biofilm-killing effect was assessed by confocal laser scanning microscopy and scanning electron microscopy. Vickers microhardness was measured to evaluate the remineralization effect of the attachments containing bioceramic fillers after acid challenge. Shear bond test was performed to assess the bonding strength.Results: Attachments with bioceramic fillers significantly inhibited plaque biofilm growth in 3 weeks on enamel, contributing over 20% bacterial cell killing in 10% filler groups and over 30% killing in 30% filler groups. All four experimental groups demonstrated significantly higher microhardness values than the control group without fillers on the attachment side. The shear bonding strength was not compromised in the attachments with micro-fillers.Discussion: Proper incorporation of bioceramic micro-fillers in attachments provides an innovative approach for clear aligner therapy with reinforced antibiofilm and remineralization effects without weakening shear bonding strength

    A review of high‐velocity impact on fiber‐reinforced textile composites: potential for aero engine applications

    Get PDF
    Considerable research has indicated that fiber-reinforced textile composites are significantly beneficial to the aerospace industry, especially aero engines, due to their high specific strength, specific stiffness, corrosion resistance, and fatigue resistance. However, damage caused by high-velocity impacts is a critical limitation factor in a wide range of applications. This paper presents an overview of the development, material characterizations, and applications of fiber-reinforced textile composites for aero engines. These textile composites are classified into four categories including two-dimensional (2D) woven composites, 2D braided composites, 3D woven composites, and 3D braided composites. The complex damage mechanisms of these composite materials due to high-velocity impacts are discussed in detail as well

    Atmospheric reactivity and oxidation capacity during summer at a suburban site between Beijing and Tianjin

    Get PDF
    Hydroxyl (OH) radicals, nitrate (NO3) radicals and ozone (O-3) play central roles in the troposphere because they control the lifetimes of many trace gases that result from anthropogenic and biogenic origins. To estimate the air chemistry, the atmospheric reactivity and oxidation capacity were comprehensively analyzed based on a parameterization method at a suburban site in Xianghe in the North China Plain from 6 July 2018 to 6 August 2018. The total OH, NO3 and O-3 reactivities at the site varied from 9.2 to 69.6, 0.7 to 27.5 and 3.3 x 10(-4 )to 1.8 x 10(-2) s(-1) with campaign-averaged values of 27.5 +/- 9.7, 2.2 +/- 2.6 and 1.2 +/- 1.7 x 10(-3) s(-1) (+/- standard deviation), respectively. NOx (NO + NO2) was by far the main contributor to the reactivities of the three oxidants, with average values of 43 %-99 %. Alkenes dominated the OH, NO3 and O-3 reactivities towards total nonmethane volatile organic compounds (NMVOCs), accounting for 42.9 %, 77.8 % and 94.0 %, respectively. The total OH, NO3 and O-3 reactivi- ties displayed similar diurnal variations with the lowest values during the afternoon but the highest values during rush hours, and the diurnal profile of NOx appears to be the major driver for the diurnal profiles of the reactivities of the three oxidants. A box model (a model to Simulate the concentrations of Organic vapors, Sulfuric Acid and Aerosols; SOSAA) derived from a column chemical transport model was used to simulate OH and NO3 concentrations during the observation period. The calculated atmospheric oxidation capacity (AOC) reached 4.5 x 10(8) molecules cm(-3) s(-1), with a campaign-averaged value of 7.8 x 10 7 molecules cm(-3) s(-1) dominated by OH (7.7 x 10(7) molecules cm(-3) s(-1), 98.2 %), 0 3 (1.2 x 10(6) molecules cm(-3) s(-1), 1.5 %) and NO3 (1.8 x 10(5) molecules cm(-3) s(-1), 0.3 %). Overall, the integration of OH, NO3 and O-3 reactivities analysis could provide useful insights for NMVOC pollution control in the North China Plain. We suggest that further studies, especially direct observations of OH and NO3 radical concentrations and their reactivities, are required to better understand trace gas reactivity and AOC.Peer reviewe
    corecore