59 research outputs found

    Rethinking GNN-based Entity Alignment on Heterogeneous Knowledge Graphs: New Datasets and A New Method

    Full text link
    The development of knowledge graph (KG) applications has led to a rising need for entity alignment (EA) between heterogeneous KGs that are extracted from various sources. Recently, graph neural networks (GNNs) have been widely adopted in EA tasks due to GNNs' impressive ability to capture structure information. However, we have observed that the oversimplified settings of the existing common EA datasets are distant from real-world scenarios, which obstructs a full understanding of the advancements achieved by recent methods. This phenomenon makes us ponder: Do existing GNN-based EA methods really make great progress? In this paper, to study the performance of EA methods in realistic settings, we focus on the alignment of highly heterogeneous KGs (HHKGs) (e.g., event KGs and general KGs) which are different with regard to the scale and structure, and share fewer overlapping entities. First, we sweep the unreasonable settings, and propose two new HHKG datasets that closely mimic real-world EA scenarios. Then, based on the proposed datasets, we conduct extensive experiments to evaluate previous representative EA methods, and reveal interesting findings about the progress of GNN-based EA methods. We find that the structural information becomes difficult to exploit but still valuable in aligning HHKGs. This phenomenon leads to inferior performance of existing EA methods, especially GNN-based methods. Our findings shed light on the potential problems resulting from an impulsive application of GNN-based methods as a panacea for all EA datasets. Finally, we introduce a simple but effective method: Simple-HHEA, which comprehensively utilizes entity name, structure, and temporal information. Experiment results show Simple-HHEA outperforms previous models on HHKG datasets.Comment: 11 pages, 6 figure

    Designing MOF Nanoarchitectures for Electrochemical Water Splitting

    Get PDF
    Electrochemical water splitting has attracted significant attention as a key pathway for the development of renewable energy systems. Fabricating efficient electrocatalysts for these processes is intensely desired to reduce their overpotentials and facilitate practical applications. Recently, metal-organic framework (MOF) nanoarchitectures featuring ultrahigh surface areas, tunable nanostructures, and excellent porosities have emerged as promising materials for the development of highly active catalysts for electrochemical water splitting. Herein, the most pivotal advances in recent research on engineering MOF nanoarchitectures for efficient electrochemical water splitting are presented. First, the design of catalytic centers for MOF-based/derived electrocatalysts is summarized and compared from the aspects of chemical composition optimization and structural functionalization at the atomic and molecular levels. Subsequently, the fast-growing breakthroughs in catalytic activities, identification of highly active sites, and fundamental mechanisms are thoroughly discussed. Finally, a comprehensive commentary on the current primary challenges and future perspectives in water splitting and its commercialization for hydrogen production is provided. Hereby, new insights into the synthetic principles and electrocatalysis for designing MOF nanoarchitectures for the practical utilization of water splitting are offered, thus further promoting their future prosperity for a wide range of applications

    Apoptosis signal-regulating kinase 1 (Ask1) deficiency alleviates MPP+-induced impairment of evoked dopamine release in the mouse hippocampus

    Get PDF
    The dopaminergic system is susceptible to dysfunction in numerous neurological diseases, including Parkinson’s disease (PD). In addition to motor symptoms, some PD patients may experience non-motor symptoms, including cognitive and memory deficits. A possible explanation for their manifestation is a disturbed pattern of dopamine release in brain regions involved in learning and memory, such as the hippocampus. Therefore, investigating neuropathological alterations in dopamine release prior to neurodegeneration is imperative. This study aimed to characterize evoked hippocampal dopamine release and assess the impact of the neurotoxin MPP+ using a genetically encoded dopamine sensor and gene expression analysis. Additionally, considering the potential neuroprotective attributes demonstrated by apoptosis signal-regulating kinase 1 (Ask1) in various animal-disease-like models, the study also aimed to determine whether Ask1 knockdown restores MPP+-altered dopamine release in acute hippocampal slices. We applied variations of low- and high-frequency stimulation to evoke dopamine release within different hippocampal regions and discovered that acute application of MPP+ reduced the amount of dopamine released and hindered the recovery of dopamine release after repeated stimulation. In addition, we observed that Ask1 deficiency attenuated the detrimental effects of MPP+ on the recovery of dopamine release after repeated stimulation. RNA sequencing analysis indicated that genes associated with the synaptic pathways are involved in response to MPP+ exposure. Notably, Ask1 deficiency was found to downregulate the expression of Slc5a7, a gene encoding a sodium-dependent high-affinity choline transporter that regulates acetylcholine levels. Respective follow-up experiments indicated that Slc5a7 plays a role in Ask1 deficiency-mediated protection against MPP+ neurotoxicity. In addition, increasing acetylcholine levels using an acetylcholinesterase inhibitor could exacerbate the toxicity of MPP+. In conclusion, our data imply that the modulation of the dopamine-acetylcholine balance may be a crucial mechanism of action underlying the neuroprotective effects of Ask1 deficiency in PD

    [1,5]-Hydride Shift-Cyclization versus C(sp2)-H Functionalization in the Knoevenagel-Cyclization Domino Reactions of 1,4- and 1,5-Benzoxazepines

    Get PDF
    Domino cyclization reactions of N-aryl-1,4- and 1,5-benzoxazepine derivatives involving [1,5]-hydride shift or C(sp2)-H functionalization were investigated. Neuroprotective and acetylcholinesterase activities of the products were studied. Domino Knoevenagel-[1,5]-hydride shift-cyclization reaction of N-aryl-1,4-benzoxazepine derivatives with 1,3-dicarbonyl reagents having active methylene group afforded the 1,2,8,9-tetrahydro-7bH-quinolino [1,2-d][1,4]benzoxazepine scaffold with different substitution pattern. The C(sp3)-H activation step of the tertiary amine moiety occurred with complete regioselectivity and the 6-endo cyclization took place in a complete diastereoselective manner. In two cases, the enantiomers of the chiral condensed new 1,4-benzoxazepine systems were separated by chiral HPLC, HPLC-ECD spectra were recorded, and absolute configurations were determined by time-dependent density functional theory- electronic circular dichroism (TDDFT-ECD) calculations. In contrast, the analogue reaction of the regioisomeric N-aryl-1,5-benzoxazepine derivative did not follow the above mechanism but instead the Knoevenagel intermediate reacted in an SEAr reaction [C(sp2)-H functionalization] resulting in a condensed acridane derivative. The AChE inhibitory assays of the new derivatives revealed that the acridane derivative had a 6.98 uM IC50 value

    Study on the Repairing Techniques of Near- Modern Historical Residences in Nanjing, China: The case study of the West Cabbage Garden Conservation project

    No full text
    Nanjing is a famous city in eastern China. The near-modern history of China was the history of the relocation of the Kuomintang regime to Taiwan and the founding of the People's Republic of China from the 1840 First Anglo-Chinese War to the 1949. There are many important near-modern architectural heritages left here. These historical residences have been used for nearly 90 years, and their structural safety performance has long been unable to meet modern standards. A large number of historical residences are in jeopardy and face a situation of extinction. In the past, some historical residences were demolished, and then people redone a new building with a highly similarly appearance. However, the historical information of the building was destroyed. In recent years, Nanjing's architects have been continually exploring better ways of architectural conservation, allowing these historical residences to meet current safety standards and performance while preserving the authenticity of the building's appearance. The repair method of this kind of building has not yet reached a conclusion. After participating in a series of conservation projects, we put forward our own theory for the conservation methods of Nanjing historic residences.This article first gives a brief introduction to Nanjing's near-modern history and summarizes the characteristics and problems of residences during this period. Then, this article takes an architectural renovation and conservation project undertaken by the authors as an example to introduce the strategies and modern methods adopted in the conservation of the historical residences

    Competitiveness Evaluation of Electric Bus Charging Services Based on Analytic Hierarchy Process

    No full text
    The premise of the large-scale operation of electric buses corresponds to efficient charging service guarantees. Recent research on charging stations mainly aims to obtain the construction location and construction sequence through optimization methods or decision-making methods. This research has considered the aspects of geography, charging efficiency, economic efficiency, and emergency response capacity. The increase of charging stations will lead to competition among charging stations, unbalanced use of charging facilities, and unnecessary loss of electricity to the power grid. In fact, few studies pay attention to the actual operation of existing charging stations. Therefore, it is necessary to establish a scientific, comprehensive, and efficient charging services evaluation framework to support the actual operation of charging stations. Based on the analytic hierarchy process (AHP), this paper designs a multi-level indicator evaluation framework, which includes 6 first-level indicators and 20 s-level indicators. The first-level indicators are cutting peak and filling valley (A1), location and scale (A2), intelligent technology (A3), equipment efficiency (A4), operating income (A5), and reliability (A6). Through the questionnaire survey of ten experts in related fields, we understood the importance and attention of these indicators. The results show that the weights of indicators of location and scale index (A2) and reliability (A6) are high, which are 0.2875 and 0.2957, respectively. The least concerned indicator is equipment utilization efficiency (A4), at a weight of 0.0531. According to the actual data of charging stations in Zhengzhou, China, the comprehensive competitiveness of several charging stations is evaluated by the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). The result shows that station 1 has the highest comprehensive competitiveness, followed by station 2 and station 7. The evaluation framework proposed in this paper comprehensively considers a variety of factors. The combination of AHP and TOPSIS can reduce the uncertainty in experts’ evaluation of the service of the charging station

    Design and Synthesis of Novel Peptides to Protect Ferulic Acid against Ultraviolet Radiation Based on Domain Site IIA of Bovine Serum Albumin

    No full text
    Ferulic acid (FA) is known for its excellent antioxidant properties, which can provide many health benefits. One of its drawbacks is its instability under UVA light, which limits its potency. In this study, the new peptides LW2 (QNKRFYFRKNQ) and CW2 (a cyclic form of LW2) were designed based on bovine serum albumin site IIA conformation. A UVA irradiation experiment was performed to investigate the protective ability of these peptides towards FA against UVA damage. The percentages of FA remaining under UV irradiation due to the protection of CW2 and LW2 were 83% and 76%, respectively. The results showed the importance of the cationic residues and hydrophobic residues included in the peptide sequences. Moreover, the cyclic rigid structure showed greater protective ability as compared to its linear counterpart

    Numerical Model of Supersaturated Total Dissolved Gas Dissipation in a Channel with Vegetation

    No full text
    The recent construction and operation of high dams have greatly changed the natural flood process. To meet the ecological demands and flood control requirements of rivers, dams discharge flow through the flood discharge facility, always accompanied by total dissolved gas (TDG) supersaturation in the water, which is harmful to fish. The purpose of this paper is to explore the dissipation characteristics and prediction methods of supersaturated TDG in water flowing through a floodplain covered with vegetation. A three-dimensional two-phase supersaturated TDG transportation and dissipation model considering the effects of vegetation was established. Using existing mechanism experimental results, the inner dissipation coefficient kin of TDG in vegetation-affected flows was studied, and the quantitative relationships between the inner dissipation coefficient kin and the average flow velocity, average water depth, average water radius, Reynolds number, and vegetation density were characterized. Based on the simulation results, the distribution characteristics of the supersaturated TDG in water around vegetation and in the vertical, lateral, and longitudinal directions of the flume under different flow and vegetation densities were analyzed. A supersaturated TDG transportation and dissipation model for vegetation-affected flow is proposed and can be used to predict the impact of TDG in a floodplain

    Identification of the Key Influencing Factors of Urban Rail Transit Station Resilience against Disasters Caused by Rainstorms

    No full text
    Improving the ability of the urban rail transit system to cope with rainstorm disasters is of great significance to ensure the safe travel of residents. In this study, a model of the hierarchical relationship of the influencing factors is constructed from the resilience perspective, in order to research the action mechanisms of the influencing factors of urban rail transit stations susceptible to rainstorm disaster. Firstly, the concept of resilience and the three attributes (resistance, recovery, and adaptability) are interpreted. Based on the relevant literature, 20 influencing factors are discerned from the 3 attributes of the resilience of urban rail transit stations. Subsequently, an interpretative structural model (ISM) is utilised to analyse the hierarchical relationship among the influencing factors. The key influencing factors of station resilience are screened out using social network analysis (SNA). Combined with ISM and SNA for analysis, the result shows that the key influencing factors are: “Flood prevention monitoring capability”; “Water blocking capacity”; “Flood prevention capital investment”; “Personnel cooperation ability”; “Emergency plan for flood prevention”; “Flood prevention training and drill”; “Publicity and education of flood prevention knowledge”; and “Regional economic development level”. Therefore, according to the critical influencing factors and the action path of the resilience influencing factors, station managers can carry out corresponding flood control work, providing a reference for enhancing the resilience of urban rail transit stations
    corecore