11 research outputs found

    Employing Synergetic Effect of Doping and Thin Film Coating to Boost the Performance of Lithium-Ion Battery Cathode Particles

    Get PDF
    Atomic layer deposition (ALD) has evolved as an important technique to coat conformal protective thin films on cathode and anode particles of lithium ion batteries to enhance their electrochemical performance. Coating a conformal, conductive and optimal ultrathin film on cathode particles has significantly increased the capacity retention and cycle life as demonstrated in our previous work. In this work, we have unearthed the synergetic effect of electrochemically active iron oxide films coating and partial doping of iron on LiMn1.5 Ni0.5O4 (LMNO) particles. The ionic Fe penetrates into the lattice structure of LMNO during the ALD process. After the structural defects were saturated, the iron started participating in formation of ultrathin oxide films on LMNO particle surface. Owing to the conductive nature of iron oxide films, with an optimal film thickness of ~0.6 nm, the initial capacity improved by ~25% at room temperature and by ~26% at an elevated temperature of 55 °C at a 1C cycling rate. The synergy of doping of LMNO with iron combined with the conductive and protective nature of the optimal iron oxide film led to a high capacity retention (~93% at room temperature and ~91% at 55 °C) even after 1,000 cycles at a 1C cycling rate

    Dramatic morphological changes in liposomes induced by peptide nanofibers reversibly polymerized and depolymerized by the photoisomerization of spiropyran

    Get PDF
    Cytoskeletons such as microtubules and actin filaments are natural protein assemblies, which dynamically control cellular morphology by reversible polymerization/depolymerization. Recently, the control of polymerization/depolymerization of fibrous protein/peptide assemblies by external stimuli has attracted significant attention. However, as far as we know, the creation of an “artificial cytoskeleton” that reversibly controls the polymerization/depolymerization of peptide nanofiber in giant unilamellar vesicles (GUVs) has not been reported. Here, we developed peptide nanofiber self-assembled from spiropyran (SP)-modified β-sheet-forming peptides, which can be reversibly polymerized/depolymerized by light. The reversible photoisomerization of the SP-modified peptide (FKFECSPKFE) to the merocyanine-peptide (FKFECMCKFE) by ultraviolet (UV) and visible light irradiation was confirmed by UV–visible spectroscopy. Confocal laser scanning microscopy with thioflavin T staining and transmission electron microscopy of the peptides showed that the SP-peptide formed β-sheet nanofibers, whereas the photoisomerization to the merocyanine-peptide almost completely dissociated the nanofibers. The merocyanine peptide was encapsulated in spherical GUVs comprising of phospholipids as artificial cell models. Interestingly, the morphology of GUV encapsulating the merocyanine-peptide dramatically changed into worm-like vesicles by the photoisomerization to the SP-modified peptide, and then reversibly changed into spherical GUV by the photoisomerization to the MC-modified peptide. These dynamic morphological changes in GUVs by light can be applied as components of a molecular robot with artificially controlled cellular functions

    Functional Characterization of Aluminum (Al)-Responsive Membrane-Bound NAC Transcription Factors in Soybean Roots

    No full text
    The membrane-bound NAC transcription (NTL) factors have been demonstrated to participate in the regulation of plant development and the responses to multiple environmental stresses. This study is aimed to functionally characterize soybean NTL transcription factors in response to Al-toxicity, which is largely uncharacterized. The qRT-PCR assays in the present study found that thirteen out of fifteen GmNTL genes in the soybean genome were up-regulated by Al toxicity. However, among the Al-up-regulated GmNTLs selected from six duplicate gene pairs, only overexpressing GmNTL1, GmNTL4, and GmNTL10 could confer Arabidopsis Al resistance. Further comprehensive functional characterization of GmNTL4 showed that the expression of this gene in response to Al stress depended on root tissues, as well as the Al concentration and period of Al treatment. Overexpression of GmNTL4 conferred Al tolerance of transgenic Arabidopsis in long-term (48 and 72 h) Al treatments. Moreover, RNA-seq assay identified 517 DEGs regulated by GmNTL4 in Arabidopsis responsive to Al stress, which included MATEs, ALMTs, PMEs, and XTHs. These results suggest that the function of GmNTLs in Al responses is divergent, and GmNTL4 might confer Al resistance partially by regulating the expression of genes involved in organic acid efflux and cell wall modification

    Natural Dissociation Ratio of Carboxyl Group Controlled Highly Dispersed Silver Nanoparticles on PSA Microspheres and Their Catalytic Performance

    No full text
    Abstract The highly dispersed silver nanoparticle-loaded poly(styrene-co-acrylic acid) nanocomposites (nAg@PSA) were prepared and characterized by transmission electron microscopy and thermogravimetry. The amount and distribution of colloidal silver per particle were related to the dissociation ratio of carboxyl groups in the PSA sphere. The amount of carboxyl groups was evaluated by a conductivity titration curve. However, the dissociation of carboxyl groups on PSA is difficult to determine accurately via existing methods because the dissociation ratio will increase with increasing impurity ions during titration. We developed a technique to determine the dissociation ratio of PSA without impurity ions. This employs a novel distance-variable parallel electrode system. Thus, the relationship between nano silver distribution and natural dissociation of carboxyl groups on the surface of the PSA spheres was investigated for the first time. Accurately measuring and controlling the dissociation facilitated the production of PSA spheres containing highly dispersed silver nanoparticles. The catalytic performance of as-prepared nAg@PSA catalysts was studied by reduction of 4-nitrophenol. By controlling the amount of natural dissociation ratio of carboxyl group on PSA sphere, dispersion of silver nanoparticles can be designed and attained controllably. They offer easy synthesis, high catalytic performance, and good recyclability

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios
    corecore