3,537 research outputs found

    One-dimensional moire chains with partially-filled flat bands in two-dimensional twisted bilayer WSe2

    Full text link
    Two-dimensional (2D) moire systems based on twisted bilayer graphene and transition metal dichalcogenides provide a promising platform to investigate emergent phenomena driven by strong electron-electron interactions in partially-filled flat bands1-11. A natural question arises: is it possible to expand the 2D correlated moire physics to one-dimensional (1D)? This requires selectively doping of 1D moire chain embedded in the 2D moire systems, which is an outstanding challenge in experiment and seems to be not within the grasp of today's technology. Therefore, an experimental demonstration of the 1D moire chain with partially-filled flat bands remains absent. Here we show that we can introduce 1D boundaries, separating two regions with different twist angles, in twisted bilayer WSe2 (tWSe2) by using scanning tunneling microscopy (STM), and demonstrate that the flat bands of moire sites along the 1D boundaries can be selectively filled. The charge and discharge states of correlated moire electrons in the 1D moire chain can be directly imaged and manipulated by combining a back-gate voltage with the STM bias. Our results open the door for realizing new correlated electronic states of the 1D moire chain in 2D systems

    Novel Mutation in Boy With Cartilage-hair Hypoplasia

    Get PDF
    BackgroundCartilage-hair hypoplasia (MIM 250250) is an autosomal recessive disease with diverse clinical manifestations. The clinical phenotypes include variable degrees of bone and hair dysplasia, deficient cellular and/or humoral immunity, and a predisposition to malignancy.MethodsWe performed genetic studies of a patient with disproportionate short stature and brittle scalp hair. Genetic studies were also carried out in the patient's parents.ResultsA novel maternal mutation that consisted of a duplication of 14 nucleotides at position −13 of the RNA component of the RNA component of mitochondrial RNA processing endoribonuclease gene (RMRP; g. −26 to −13 dupTACTACTCTGTGAA, promoter region) and a paternal mutation base substitution of C to T at nucleotide + 230 (designated as + 1 in the transcription initiation site) in the coding sequence of RMRP were detected in this patient.ConclusionA novel maternal RMRP mutation was found in a Chinese boy with typical cartilage-hair hypoplasia

    Tunable Atomically Wide Electrostatic Barriers Embedded in a Graphene WSe2 Heterostructure

    Full text link
    Inducing and controlling electrostatic barriers in two-dimensional (2D) quantum materials has shown extraordinary promise to enable control of charge carriers, and is key for the realization of nanoscale electronic and optoelectronic devices1-10. Because of their atomically thin nature, the 2D materials have a congenital advantage to construct the thinnest possible p-n junctions1,3,7,9,10. To realize the ultimate functional unit for future nanoscale devices, creating atomically wide electrostatic barriers embedded in 2D materials is desired and remains an extremely challenge. Here we report the creation and manipulation of atomically wide electrostatic barriers embedded in graphene WSe2 heterostructures. By using a STM tip, we demonstrate the ability to generate a one-dimensional (1D) atomically wide boundary between 1T-WSe2 domains and continuously tune positions of the boundary because of ferroelasticity of the 1T-WSe2. Our experiment indicates that the 1D boundary introduces atomically wide electrostatic barriers in graphene above it. Then the 1D electrostatic barrier changes a single graphene WSe2 heterostructure quantum dot from a relativistic artificial atom to a relativistic artificial molecule

    Toward Optimal Resource Allocation of Virtualized Network Functions for Hierarchical Datacenters

    Get PDF
    Telecommunications service providers (TSPs) previously provided network functions to end users with dedicated hardware, but they are resorting to virtualized infrastructure for reducing costs and increasing flexibility in resource allocation. A representative case is the Central Office Re-architected as Datacenter (CORD) project from AT&T, which aims to deploy virtualized network functions (VNFs) to over 4000 central offices (COs) across the U.S. However, there is a wide spectrum of options for deploying VNFs over the COs, varying from highly distributed to highly centralized manners. The former benefits end users with short response time but has its inherent limitation on utilizing geographically dispersed resources, while the latter allows resources to be better utilized at a cost of longer response time. In this work, we model the TSP's virtualized infrastructure as hierarchical datacenters, namely hierarchical CORD, and provide a resource allocation solution to strike the optimal balance between the two extreme options. Our evaluations reveal that in general, the 3-tier architecture incurs the least cost in case of deploying VNFs under moderate or loose delay constraints. Furthermore, the margin of improvement on the resource allocation cost increases inversely with the overall system utilization rate. Our results also suggest that as heavy request load overwhelms the network infrastructure, the relevant VNFs shall be migrated to lower-tier edge datacenters or to some nearby datacenters with superior network capacity. The evaluations also demonstrate that the proposed model allows highly adaptive VNF deployment in the hierarchical architecture under various conditions.This work was supported in part by H2020 Collaborative Europe/Taiwan Research Project 5G-CORAL under Grant 761586, and in part by the Ministry of Science and Technology, Taiwan, under Grant MOST-106-2218-E-009-018 and Grant MOST-106-2221-E-194-021-MY3

    Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic neuropathic pain is an intractable pain with few effective treatments. Moderate cold stimulation can relieve pain, and this may be a novel train of thought for exploring new methods of analgesia. Transient receptor potential melastatin 8 (TRPM8) ion channel has been proposed to be an important molecular sensor for cold. Here we investigate the role of TRPM8 in the mechanism of chronic neuropathic pain using a rat model of chronic constriction injury (CCI) to the sciatic nerve.</p> <p>Results</p> <p>Mechanical allodynia, cold and thermal hyperalgesia of CCI rats began on the 4th day following surgery and maintained at the peak during the period from the 10th to 14th day after operation. The level of TRPM8 protein in L5 dorsal root ganglion (DRG) ipsilateral to nerve injury was significantly increased on the 4th day after CCI, and reached the peak on the 10th day, and remained elevated on the 14th day following CCI. This time course of the alteration of TRPM8 expression was consistent with that of CCI-induced hyperalgesic response of the operated hind paw. Besides, activation of cold receptor TRPM8 of CCI rats by intrathecal application of menthol resulted in the inhibition of mechanical allodynia and thermal hyperalgesia and the enhancement of cold hyperalgesia. In contrast, downregulation of TRPM8 protein in ipsilateral L5 DRG of CCI rats by intrathecal TRPM8 antisense oligonucleotide attenuated cold hyperalgesia, but it had no effect on CCI-induced mechanical allodynia and thermal hyperalgesia.</p> <p>Conclusions</p> <p>TRPM8 may play different roles in mechanical allodynia, cold and thermal hyperalgesia that develop after nerve injury, and it is a very promising research direction for the development of new therapies for chronic neuroapthic pain.</p

    Structural insights into the gating of DNA passage by the topoisomerase II DNA-gate.

    Get PDF
    Type IIA topoisomerases (Top2s) manipulate the handedness of DNA crossovers by introducing a transient and protein-linked double-strand break in one DNA duplex, termed the DNA-gate, whose opening allows another DNA segment to be transported through to change the DNA topology. Despite the central importance of this gate-opening event to Top2 function, the DNA-gate in all reported structures of Top2-DNA complexes is in the closed state. Here we present the crystal structure of a human Top2 DNA-gate in an open conformation, which not only reveals structural characteristics of its DNA-conducting path, but also uncovers unexpected yet functionally significant conformational changes associated with gate-opening. This structure further implicates Top2's preference for a left-handed DNA braid and allows the construction of a model representing the initial entry of another DNA duplex into the DNA-gate. Steered molecular dynamics calculations suggests the Top2-catalyzed DNA passage may be achieved by a rocker-switch-type movement of the DNA-gate

    Mobile robotics platform for strawberry temporal–spatial yield monitoring within precision indoor farming systems

    Get PDF
    Plant phenotyping and production management are emerging fields to facilitate Genetics, Environment, &amp; Management (GEM) research and provide production guidance. Precision indoor farming systems (PIFS), vertical farms with artificial light (aka plant factories) in particular, have long been suitable production scenes due to the advantages of efficient land utilization and year-round cultivation. In this study, a mobile robotics platform (MRP) within a commercial plant factory has been developed to dynamically understand plant growth and provide data support for growth model construction and production management by periodical monitoring of individual strawberry plants and fruit. Yield monitoring, where yield = the total number of ripe strawberry fruit detected, is a critical task to provide information on plant phenotyping. The MRP consists of an autonomous mobile robot (AMR) and a multilayer perception robot (MPR), i.e., MRP = the MPR installed on top of the AMR. The AMR is capable of traveling along the aisles between plant growing rows. The MPR consists of a data acquisition module that can be raised to the height of any plant growing tier of each row by a lifting module. Adding AprilTag observations (captured by a monocular camera) into the inertial navigation system to form an ATI navigation system has enhanced the MRP navigation within the repetitive and narrow physical structure of a plant factory to capture and correlate the growth and position information of each individual strawberry plant. The MRP performed robustly at various traveling speeds with a positioning accuracy of 13.0 mm. The temporal–spatial yield monitoring within a whole plant factory can be achieved to guide farmers to harvest strawberries on schedule through the MRP’s periodical inspection. The yield monitoring performance was found to have an error rate of 6.26% when the plants were inspected at a constant MRP traveling speed of 0.2 m/s. The MRP’s functions are expected to be transferable and expandable to other crop production monitoring and cultural tasks
    • …
    corecore