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Plant phenotyping and production management are emerging fields to facilitate

Genetics, Environment, & Management (GEM) research and provide production

guidance. Precision indoor farming systems (PIFS), vertical farms with artificial

light (aka plant factories) in particular, have long been suitable production scenes

due to the advantages of efficient land utilization and year-round cultivation. In

this study, a mobile robotics platform (MRP) within a commercial plant factory

has been developed to dynamically understand plant growth and provide data

support for growth model construction and production management by

periodical monitoring of individual strawberry plants and fruit. Yield

monitoring, where yield = the total number of ripe strawberry fruit detected, is

a critical task to provide information on plant phenotyping. The MRP consists of

an autonomous mobile robot (AMR) and amultilayer perception robot (MPR), i.e.,

MRP = theMPR installed on top of the AMR. The AMR is capable of traveling along

the aisles between plant growing rows. The MPR consists of a data acquisition

module that can be raised to the height of any plant growing tier of each row by a

lifting module. Adding AprilTag observations (captured by a monocular camera)

into the inertial navigation system to form an ATI navigation system has

enhanced the MRP navigation within the repetitive and narrow physical

structure of a plant factory to capture and correlate the growth and position

information of each individual strawberry plant. The MRP performed robustly at

various traveling speeds with a positioning accuracy of 13.0 mm. The temporal–

spatial yield monitoring within a whole plant factory can be achieved to guide

farmers to harvest strawberries on schedule through the MRP’s periodical

inspection. The yield monitoring performance was found to have an error rate

of 6.26% when the plants were inspected at a constant MRP traveling speed of

0.2 m/s. The MRP’s functions are expected to be transferable and expandable to

other crop production monitoring and cultural tasks.

KEYWORDS

mobile robotics platform, indoor vertical farming systems, GPS-denied navigation,
temporal–spatial data collection, yield monitoring
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1 Introduction

Strawberries (Fragaria × ananassa) are favored by consumers

due to their rich nutrition and distinctive flavor. Precision indoor

farming systems (PIFS), vertical farms with artificial light (aka plant

factories) in particular, have long been suitable plant production

scenes due to the advantages of efficient land utilization and year-

round cultivation. In recent years, some companies, including

Bowery Farming, Oishii Farm, and 4D Bios, successfully

cultivated strawberries in plant factories. Farmers and researchers

need to understand how plants grow and provide what plants need

to increase fruit yield and quality. Plant phenotyping, an emerging

science that describes the formation process of the functional plant

body (phenotype) under the influence of dynamic interaction

between the genotypic differences (genotype) and the

corresponding environmental conditions (Walter et al., 2015), can

provide valuable information for crop genetic selection and

production management. People usually go to fields or

laboratories to manually obtain plant phenotypic data. Such

practices are highly labor-intensive, time-consuming, non-robust,

and sometimes destructive and, therefore, may be limited by

experimental scale, collection accuracy, and human subjective

differences (Bao et al., 2019). A field-based, large-scale, and high-

throughput plant phenotyping approach to overcome the

bottleneck of manual operation is urgently needed (Araus

et al., 2018).

Internet of Things (IoT) devices, which focus on collecting

environmental data, are prevalent within PIFS as the monitoring

system. Experience-oriented growth regulation decision-making

can be built using environmental data by production managers.

However, the decision-making process based on experience is

indirect and delayed. The plant phenotypic data should be added

to form a closed-loop decision-making pipeline. Considering fine-

grained data collection is positively correlated with the number of

camera sensors, the coverage and accuracy of data acquired by

traditional IoT systems cannot be readily achieved within

reasonable budgets. Mobile robots equipped with multiple sensors

(the concept of quasi-IoT) present a great potential to acquire

desired phenotyping data automatically. In the past few years,

reported examples of phenotyping robots, emphasizing mobility-

enabled field trials, have been increasing (Mueller-Sim et al., 2017;

Shafiekhani et al., 2017; Higuti et al., 2019). However, there has been

limited published work on mobile robots that have the capability of

autonomously capturing phenotypic data within PIFS. We aimed to

develop a mobile robotics platform (MRP) with the capabilities of

periodical monitoring of individual strawberry plants and fruit

within the entirety of a commercial plant factory. Fine-grained

plant growth data captured by the MRP can provide production

guidance and facilitate integrated GEM research.

An MRP applied in agricultural scenarios should have two

primary capabilities: providing navigation for multiple-location

data acquisition and data-driven decision support. Navigation in

indoor scenarios is challenging due to the lack of GPS. As an

alternative approach to GPS used in indoor scenarios, ultra-

wideband (UWB) is high-precision but high-cost (Flueratoru

et al., 2022). The stability of the navigation is closely related to
Frontiers in Plant Science 02
the strength of signals that suffer from occlusion and attenuation

errors under plant growing structures. Furthermore, UWB provides

relatively static information that cannot detect unexpected

obstacles. Light Detection and Ranging (LiDAR) sensors have

been widely used in agricultural navigation that can actively

acquire accurate depth information with an extensive detection

range and a low sensitivity to lighting changes compared to other

sensors (Debeunne and Vivet, 2020). A random sample consensus

(RANSAC) algorithm was applied to discern maize rows fast and

robustly while navigating in a well-structured greenhouse (Reiser

et al., 2016). However, in complex environments like plant factories

with repetitive shelves and narrow aisles, LiDAR can only obtain a

limited number of signals representing the presence of objects.

There is no semantic information for effectively completing the

scene restoration. In contrast, visual navigation is limited by the low

accuracy in depth estimation and the weak robustness against

lighting changes (Zhang et al., 2012). A robot cannot safely and

robustly navigate within plant factories using only one sensor as the

single perception source. Multi-sensor fusion approaches, which

can significantly improve the fault tolerance of a system while

increasing the system’s redundancy to increase the accuracy of

object localization, have been proven to show great potential to

solve navigation problems in complex scenes like urban traffic

(Urmson et al., 2008). In consideration of a GPS-denied

environment like PIFS, simultaneous localization and mapping

(SLAM) technology can be a feasible navigation approach (Chen

et al., 2020). The state-of-the-art LiDAR-SLAM Cartographer (Hess

et al., 2016) and visual–inertial system (VINS) (Qin et al., 2018) are

all open-source tools in the ROS (Robot Operating System)

community. These algorithms, which can be easily implemented

on a mobile robot, can potentially address navigation challenges.

However, SLAM has some limitations, such as computational cost

and lack of feature extraction ability; therefore, it is not directly

applicable to this research. In this study, we report our research on a

novel approach of fusing wheel odometry, inertial measurement

unit (IMU), and AprilTag observations (captured by a monocular

camera) to achieve accurate navigation within repetitive and narrow

passages of PIFS.

Providing data-driven decision support based on the plant

growth information is the other critical capability of the MRP.

There exist some common decision-making pipelines in both

academia and industry, including ripeness detection (Talha et al.,

2021), diseases and pest identification (Lee et al., 2022), and fruit

counting (Kirk et al., 2021). Image data captured by various

perception systems have been widely used to achieve the above

purpose (Gongal et al., 2015). In recent years, AlexNet brought

about a renewed understanding of deep CNN and evolved into the

foundation of contemporary computer vision (Krizhevsky et al.,

2012). The powerful end-to-end learning makes the decisions

possible, especially in the detection-based task from static images

(Zhou et al., 2020; Perez-Borrero et al., 2021). The computing

power of MRP limits the development of efficient CNN

architectures as the neural network deepens (Zhang et al., 2018).

Both occlusions from neighboring fruit and foliage and illumination

changes could cause variations in fruit appearance (Chen et al.,

2017). Compared to tasks, like ripeness and disease detection,
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counting from videos is challenging due to bias in fruit localization

and tracking errors originating from occlusions and illumination

changes (Liu et al., 2018b). Some traditional algorithms, including

Optical Flow, Hungarian algorithm, and Kalman Filters, were used

to track multiple fruits among sequential video frames. Liu et al.

combined fruit segmentation and Structure from Motion (SfM)

pipelines for counting apples and oranges grown on trees. The extra

introduction of relative size distribution estimation and 3D

localization could eliminate parts of double-counted fruits to

further enhance the counting accuracy. Strawberry fruit is of

small sizes and has complex ripe stages and dense growth scenes,

which bring real challenges to the detection and tracking process.

This paper reports the current state of development and testing

of the MRP’s abilities of periodical monitoring of individual

strawberry plants and fruit within a commercial plant factory.

The challenges of navigation within narrow and repetitive indoor

environments for temporal–spatial plant data acquisition and

accurate yield monitoring for production management and

harvesting scheduling in the MRP’s periodical inspection

operations need to be taken into consideration. In summary, the

objectives of our research are as follows:
Fron
1. To develop the software and hardware of an MRP,

consisting of an autonomous mobile robot (AMR) and a

multilayer perception robot (MPR), which can capture

temporal–spatial phenotypic data within a whole

strawberry factory.

2. To achieve accurate navigation within the repetitive and

narrow structural environments of a PIFS through an

AprilTag and inertial navigation (ATI navigation)

algorithm.

3. To evaluate the performance of strawberry yield

monitoring through a novel pipeline that combines

keyframes extraction, fruit detection, and postprocessing

technologies.
2 Mobile robotics platform

In this study, an MRP to operate within a PIFS with multiple

plant growing tiers has been developed to dynamically monitor

plant growth and provide data for supporting crop growth model

construction and production management. The modularly designed

MRP (Figure 1) consists of an AMR, i.e., the mobile base, and an

MPR, i.e., the lifting module + perception module, where MRP =

MPR installed on top of AMR. The AMR is capable of traveling

along the aisles between plant growing rows (i.e., x direction) with

high positioning accuracy (PA) and robust navigation capability.

The MPR has a perception module (for data acquisition) that can be

raised by a lifting module to reach the heights (z direction) of all

plant growing tiers of every row within the PIFS. The assembly of

the AMR and MPR can perform automatic acquisition, storage, and

transmission of phenotypic data of all individual plants within the

entirety of a plant factory. Furthermore, multiple fault detection

measures were designed and installed in the MRP. The MRP has
tiers in Plant Science 03
been operating in a commercial strawberry production plant factory

since July 2022, and has been working as expected so far.

The AMR is a differential drive mobile robot with two 165-mm

hub motors, which has the ability to turn on the spot. The cylinder

shape mobile base has a diameter of 500 mm and a height of 240

mm, which can travel at a maximum speed of 1.5 m/s through an

aisle (with a minimum width of 600 mm) within a plant factory. An

Intel® Core™ i5-8265U/1.6 GHz industrial computer is mounted

inside the robot to run all navigation, data acquisition, and data

transmission programs. The speed control commands from the

industrial computer can be received by a low-level control board to

drive the AMR to move. Wheel encoders, an IMU (US$40)

mounted inside the mobile base, and a downward viewing

monocular camera (US$25) to detect AprilTags on the floor are

integrated to realize accurate localizations within PIFS, and a 2D

LiDAR is used to detect obstacles. An emergency button is directly

connected to the low-level control board to stop the motors

when necessary.

The MPR is for use to perform data acquisition. The perception

module of the MPR is an Intel® RealSense™ D435i depth camera

(Intel Corporation, California, USA) mounted on a servo motor

that provides the camera with the pitch motion to capture multiple

images from various camera angles. The perception module can be

raised to 2.8 m, the height of the top tier of each plant growing row,

by the lifting module. The phenotypic data of each plant within a

strawberry PIFS can be collected by the MRP’s periodical inspection

of the entire facility. Data of all plants on one of the five tiers were

collected on one inspection route. The data of plants and the MRP’s

motion can be recorded in the rosbag format at a unified timestamp,

which facilitates the data analysis and decision support processes.

During the experiments on data acquisition, the MRP traveled at

the speeds of 0.2, 0.3, and 0.4 m/s along the aisle between plant

growing rows. The distance between the center of the MRP and the

sides of the plant growing rows was kept at approximately 410 mm.
FIGURE 1

Hardware of the mobile robotics platform (MRP).
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The resolution of the RealSense camera was set to 1,280 × 720 at 30

frames per second (FPS). The camera was set to be parallel to the

side of a plant growing row by a servo motor and at the same height

as the fruit by the lifting module. The same procedure was

conducted to ensure the success of data acquisition on each tier.
3 Methods

This section presents two basic capabilities of the MRP:

navigation for multiple-location data acquisition and strawberry

yield monitoring.
3.1 Navigation

The navigation system installed in the AMR included

navigation sensors, an industrial computer, and a low-level

control system (Figure 2). The ROS was implemented in the

industrial computer to collect data and conduct the navigation

pipeline. There were five ROS nodes in the navigation pipeline,

including an obstacle detection node, a localization node, a

navigation node, a state machine node, and a low-level

communication node. The real-time poses (position and heading)

of MRP were calculated from the camera, IMU, and wheel encoders,

through the localization node. The poses were received by the

navigation node to conduct the global path planning and local path

tracking, which, in turn, generated the target angular velocity and

linear velocity of the MRP at a frequency of 50 Hz. The obstacle

information captured by a 2D LiDAR from the obstacle detection

node and the localization state (success or failure) from the

localization node were sent to the state machine node. The

updated state of the system from the state machine node and the

target velocity from the navigation node were transmitted to the

low-level communication node, which then calculated the target

speed of the two motors and sent them to the low-level control

board through serial communication.

An ATI navigation algorithm was developed to address the

challenges of accurate navigation within the repetitive and narrow

structural environments of a PIFS. The ATI navigation algorithm

consists of four parts: mapping, localization, planning, and control.

The purpose of mapping in this study was to chart the moving

route of MRP. The research was carried out at a commercial
Frontiers in Plant Science 04
strawberry factory (4D Bios Inc., Hangzhou, China). A total of 45

AprilTags (Olson, 2011) of 40 × 40 mm in size were pasted on the

grounds of both sides of each plant growing row. An 875 Prolaser®

(KAPRO TOOLS LTD., Jiangsu Province, China) was used to

ensure that all tags were on a designated straight line. The

distance between the two neighboring tags was approximately 1.3

m. When collecting data for developing the ground map of a

production facility, the MRP was first moved to Tag 0, which is

the location of the charging pile (Figure 3). The MRP was controlled

by a joystick to pass above the tags in order while simultaneously

recording the data of the monocular camera, IMU, and wheel

encoders. The mapping dataset was built after MRP had traveled

along all the tags and returned to Tag 0.

The tag ID and the homogeneous transform of the tag relative

to the monocular camera mounted on the MRP were both

calculated by the AprilTag detection algorithm (Wang and Olson,

2016). The wheel encoders and IMU were fused to calculate the

trajectory of the MRP using Equation 1.

qk+1 = qk + Dqimu

xk+1 = xk + (Dsl + Dsr) cos (qk)=2

yk+1 = yk + (Dsl + Dsr) sin (qk)=2

8>><
>>:

(1)

where Dqimu is the heading variation of IMU between

timestamps of k and k + 1. Dsl and Dsr represent the motions of

the left and right wheel obtained by optical encoder during two

timestamps, respectively.

The tag IDs were further used to conduct the loop closing

optimization through the pose graph optimization (PGO)

algorithm. The vertices were represented by processed global

poses of the tags, and the edges were denoted by relative pose

changes of the odometer while MRP accessed two neighboring tags.

We cast this as a nonlinear least squares problem

argmin
x

1
2oij

eTijWijeij 
FIGURE 2

Navigation system architecture.

FIGURE 3

The MRP is being charged in the commercial strawberry factory.
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where the state of the tag is denoted by a 2D coordinate vector

and a heading angle, x = fp,   qg. The information matrixWij is used

to assign weights to different errors. The error eij between the

expected observation and the real observation from Tag i and Tag j,

can be calculated by Equation 2.

eij = (
RT
i (pj − pi) − p̂ ij

qj − qi − q̂ ij 
) (2)

Ri is the rotation matrix corresponding to the heading angle in

xi. p̂ ij and q̂ ij represent the relative pose changes of edges.

Levenberg–Marquardt (L-M) algorithm was used to optimize the

poses of all tags and generate the map. The accurate poses of the

tags could be obtained in the process of mapping.

Based on whether one of the AprilTags was detected at the

current timestamp, the estimations of localization could be divided

into two situations. When the tag was correctly detected by the

monocular camera, the global pose of the MRP at this timestamp

could be calculated by the global pose of the tag in the existing map

and the pose transform of the tag relative to the MRP. Otherwise,

the detection result of the last tag in the existing map and the

odometry changes from the timestamp when the last tag was

detected to the current timestamp were used to estimate the

global pose of the MRP.

In path planning, based on the destination, on the mapped

route, entered by a human operator, a trajectory composed of a

sequential set of locations could be generated by MRP’s global path

planner as the waypoints. Based on whether the destination is a

tagged position, global path planning can be divided into two cases.

If the destination is the position of one of the tags on the undirected

map, the shortest path can be obtained through the breadth-first

search (BFS) algorithm. If not, a virtual tag representing the

destination will be temporarily inserted between two adjacent tags

on the undirected map. The optimal path could be calculated by the

BFS algor i thm performed on the newly constructed

undirected map.

After obtaining the global path, the MRP can be navigated

through a series of local paths at the angular and linear velocities

issued by the low-level control board (Figure 2). For a straight

global path consisting of more than or equal to three tags, the local

path target position is set to Tagi+2 with MRP passing Tagi, which

will keep the velocity of the MRP along the planned route stable.

Angular velocity is calculated by the anti-windup pi controller to

adjust the heading toward the target position. The linear velocity is

calculated by a proportional controller to prevent system overshoot.

The target speed of the left and right motors will be further obtained

according to the differential motion model.
3.2 Yield monitoring

The growth condition of strawberries on each tier of the plant

growing rows could be recorded in a video format after the

inspection by the MRP. In this study, we have developed a

strawberry yield monitoring method. The counting-from-video
Frontiers in Plant Science 05
method consisted of two phases: detection and counting of

ripe fruit.

3.2.1 Fruit detection
Ripeness detection is the first step in the yield monitoring

pipeline. Considering that the detection task has high

requirements for speed and accuracy, the single-stage detector

YOLOv5 is chosen to detect the ripe strawberry (Jocher et al.,

2022). The framework of the detector can be divided into four parts:

Input with mosaic data augmentation, CSPDarknet53 (Bochkovskiy

et al., 2020) as Backbone, Neck applying Feature Pyramid Network

(FPN) (Lin et al., 2017) and Path Aggregation Network (PAN) (Liu

et al., 2018a), and Prediction using GIoU loss (Rezatofighi et al.,

2019). The framework extracts and aggregates semantically and

spatially strong features more efficiently. More efficient

representation improves the performance of multi-scale object

recognition. Various variants have been generated by adjusting

the depth and width of the network. YOLOv5l6 was used in this

research, with an inference time of 15.1 ms running on an

NVIDIA® V100 Tensor Core GPU.

3.2.2 Fruit counting
A fruit counting pipeline was presented to count ripe

strawberries on video, including keyframe extraction, fruit

detection, and postprocessing (Figure 4).

3.2.2.1 Keyframe extraction

Considering that any individual strawberry fruit could appear in

multiple frames of the video captured, the number of times a fruit

might be counted was not fixed. Therefore, fruit detection results

could not be directly accumulated to obtain the counting results.

The concept of keyframe extraction was applied to fix the number of

times of repetitive counting, r. The pixel distance of two

neighboring keyframes in the pixel coordinate system, dp, was

calculated by Equation 3.

dp =
w
r

(3)

where w was the image width. All strawberries in the video were

required to appear at least twice in all extracted frames; therefore, r

was greater than or equal to 2. Figure 5 shows example series of

keyframes at various values of r.

The pixel distance between keyframes was converted to the

movement of fruit in the camera coordinate system to further
FIGURE 4

The overall yield monitoring pipeline.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1162435
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ren et al. 10.3389/fpls.2023.1162435
calculate the interval between keyframes in the video. The

theoretical interval of keyframes, it  ,  could be calculated by

Equation 4.

it =
dp � d � fps

fx � v
            (4)

where fps is the frame rate of the video. fx denotes the intrinsic

parameters of the RealSense camera, v represents the traveling

speed of MRP, and d stands for the average distance between the

camera and the fruit. Equation 5 was used to calculate the nearest

integer of it to obtain the actual interval of keyframes, i.

i = int(it) = int(
w� d � fps
fx � v � r

)           (5)

where the variable d was assumed to be a constant in this study.

i is only related to values of v and r, where i = g(v � r). The

counting-from-video problem was transformed into the statistics of

fruit detection results of keyframes.
3.2.2.2 Postprocessing

Postprocessing approaches were integrated to further improve

the counting accuracy, including distance filtration, edge filtration,
Frontiers in Plant Science 06
and multi-sequence average. Strawberries on other plant growing

rows might enter the camera’s field of view during the MRP

inspection process. The distance filtration approach based on the

bounding box (bbox) size of the detection results was developed to

eliminate the interference to counting by the strawberries located

outside experimental areas. An edge filtration approach was used to

prevent partially visible strawberries at the edge of the image from

being counted repeatedly. Only the strawberries that appeared on

the left edge were counted, and the strawberries that appeared on

the right edge were ignored. Figure 6 shows the two situations

described above.

There existed errors in frame extraction between the actual

interval of keyframes i and the theoretical interval of keyframes it ,

e = ji − it j. A multi-sequence averaging algorithm was developed to

reduce the counting errors caused by the errors that occurred in the

keyframe extraction process. The yield monitoring algorithm was

presented as Algorithm 1:
Input: Threshold of keyframe interval is,

Threshold of errors of frame extraction es,

Threshold of the number of repetitive

counting rs, MRP traveling speed v, Inspection
FIGURE 5

Example series of keyframes at various values of r: r = 2 in the upper row, r = 3 in the middle row, and r = 4 in the bottom row.
FIGURE 6

Upper row: Three example cases that needed to be processed by distance filtration. Strawberries annotated with yellow bboxes were not in the
experimental areas and were not counted. Bottom row: Edge filtration was applied to process three consecutive keyframes (r = 2). The ripe fruit A was
not counted since it was partly visible on the right edge of the left image. Fruit A was counted after it had moved to the left edge of the right image.
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video V
Output: The number of ripe fruits in the video

V , n

Initialize is =4, es =0.1, rs=15

Initialize R =  frjgr
s

j=2 = f2, 3,…, rsg
1 It : =  fit jjit j : = g(rj � v), rj ϵRgr

s

j :=2

// Calculated by Eq. (4)

2 I : = fijjij : = (itj), itj ϵ Itgr
s

j :=2

// Calculated by Eq. (5)

3 E : = fejjej : = jitj − ijj, itj ϵ It , ij ϵ Igr
s

j :=2

4 Re : = frjjrj ϵR, ej > es, ej ϵEgr
s

j :=2

5 Ri   : = frjjrj ϵR, ij < is, ij ϵ Igr
s

j :=2

6 Rs  R − Re ∩ Ri

7 Es : = fejjej ϵE, rj ϵRgr
s

j :=2

8 ~Es : = Sort(Es) // Sort: To sort Es to get an

ascending-order array ~Es

9 if ~Es½2� > esthen
Ec : = f~Es½0�, ~Es½1�g

else
Ec : = f~Es½0�, ~Es½1�, ~Es½2�g

10 Rc : = frjjrj ϵRs, ej ϵ Ecgrsj :=2
11 Ic   : = fijjij ϵ I, rj ϵRcgrsj :=2 // Rc: The group of

filtered intervals of keyframes

12 S   : = fsrj jsrj : = E(V, ij), rj ϵRc, ij ϵ Icg // E: To

extract keyframes from V at interval ij
13 SF : = fsFr jsFr : = F (sr), sr ϵ S,   r ϵRcg // F: To apply

distance and edge filtration

14 N   : = fnrjnr : = C(sr)
r , sr ϵ SF , r ϵRcg// C: To count

the ripe fruit in sr
15 n   : =  Average(N) // Average: To average all

the sequence results in N.
ALGORITHM 1
Yield monitoring.
4 Procedure of experiments

In this study, experiments were carried out at a commercial

strawberry plant factory (Figure 2) in December 2022. Fragaria ×
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ananassa Duch. cv. Yuexin plants bred by the Zhejiang Academy of

Agricultural Sciences (Hangzhou, Zhejiang, China) were cultivated

on four-tier planting structures. The experiments were conducted

on a row of three four-tier planting structures near a wall. There

were 12 planting pots in every tier of each planting structure, and

five strawberry plants were grown in each planting pot. Experiments

were carried out on a total of 720 strawberry plants (i.e., 5 plants/pot

× 12 pots/tier × 4 tiers/planting structure × 3 planting structures =

720 plants). Figure 7 shows the floor layout of the research facility

and the MRP inspection route.
4.1 Navigation capability

4.1.1 Mapping
The typical configuration of a plant factory is a corridor

environment with repetitive and narrow planting structures,

which brings significant challenges to the LiDAR-based SLAM

algorithm in mapping operations. LIO-SAM, one of the advanced

LiDAR-based SLAM algorithms, was implemented on the MRP to

compare and prove the advantages of the proposed mapping

algorithm. LIO-SAM is a real-time, tightly coupled Lidar-Inertial

odometry with high odometry accuracy and good mapping quality

(Shan et al., 2020). In order to satisfy the use of the LIO-SAM

algorithm, a VLP-16 3D LiDAR scanner (Velodyne Lidar,

California, USA) and a WitMotion HWT905 nine-axis attitude

and heading reference system (AHRS) sensor (WitMotion,

Shenzhen, China) were integrated within the MRP. The collection

of the mapping dataset was conducted using the same approach

mentioned in Section 3.1. The data of 3D LiDAR and nine-axis IMU

were used in the LIO-SAM algorithm for pose estimation. The data

of the monocular camera, IMU, and wheel encoders were used in

the mapping algorithm of the ATI navigation system developed in

this research. All optimization processes were conducted offline for

the two algorithms. Another experiment was conducted to compare

the mapping performances of the ATI navigation system, without

and with loop closing optimization, to show the impact of

optimization in this research. Mapping trajectories were used to

evaluate the mapping performances of the three approaches.
FIGURE 7

Schematic diagram of the experimental scene and inspection route.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1162435
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
Brenda
Note
Marked set by Brenda

Brenda
Note
Marked set by Brenda



Ren et al. 10.3389/fpls.2023.1162435
4.1.2 Localization
This experiment aims to test the ability of MRP to move to a

desired location as expected. PA was used to evaluate the navigation

performance in this research. The coordinate system is shown in the

lower left corner of Figure 7. The positive direction of the X-axis is

consistent with the movement direction of the MRP when

inspecting strawberry plants. In the autonomous navigation

mode, three tags at different positions (Tags 8, 12, and 21) were

selected for testing PA. The MRP started from Tag 5 and navigated

to the target tag at the traveling speed of 0.4 m/s after entering the

Tag ID. The current position of the tag in the image coordinate

system was recorded to compare with the tag’s position in the map

generated by the ATI navigation algorithm. The same operations

were repeated five times for each tag. Euclidean distance between

two positions was represented as distance deviation, err _ d. err _ x

represents the deviation in the x direction, and err _ y represents the

deviation in the y direction. The root mean squared error (RMSE)

of five trails per tag was computed by Equation 6, and the RMSE of

15 trails of three tags was computed as PA.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ko

l
l=1err _ d

2
l

r
(6)

where k is the number of trails. err _ dl represents the err _ d in

trail l.
4.2 Fruit detection and counting

4.2.1 Fruit detection
A total of 80 videos were captured along the plant growing rows

by farmers at a normal walking pace using an Intel® RealSense™

D435i depth camera and a smartphone, under various illumination

conditions, different strawberry growth scenes, and various

strawberry growth stages (from March to July 2021). The dataset

consisted of 1,600 frames that were extracted out of every 10 frames

from the videos, with the images without strawberries manually

removed. All strawberry fruits in the period of veraison were

annotated by growers. Of those, every fruit having an 80% or

more red area on its surface was annotated as a ripe fruit

(Hayashi et al., 2010). Other fruits were annotated as unripe ones.

The dataset, including 2,327 ripe strawberries and 2,492 unripe

strawberries, was randomly divided into train, validation, and test

sets at the ratio of 8:1:1.

The strawberry ripeness detection model, YOLOv5l6, was

implemented using the PyTorch framework. The modeling

process was performed on a Linux workstation (Ubuntu 16.04

LTS) with two Intel Xeon E5-2683 Processors (2.1G/16 Core/

40M), 128 GB of RAM, and four NVIDIA GeForce GTX 1080Ti

graphics cards (11 GB of RAM). Taking a mini-batch size of 16, the

SGD optimizer was adopted with a decay of 0.0001 and a

momentum of 0.937. The best performance was achieved under

the initial learning rate of 0.01. The number of warmup epochs and

total training epochs were set to 3 and 90, respectively. The best

model weight was chosen according to the value of mean average
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precision (mAP) (Everingham et al., 2010) calculated on the

validation set. The chosen model was evaluated on the test set by

mAP@0.5 (at the IoU threshold of 0.5).

4.2.2 Fruit counting
False detections and missed detections of fruit in a particular

frame cannot be corrected by any other frames. Therefore, in this

study, a counting algorithm was developed to count every fruit

multiple times (a predetermined number of times that is equal to or

greater than 2) in order to improve the accuracy of the fruit

counting. The performance of the proposed algorithm was

affected by r, i, and e. As mentioned in Section 3.2, i and e were

related to the value of r. In this experiment, various values of r were

tested to build the fruit counting algorithm with a robust

performance. The MRP traveled at the speed of 0.3 m/s along the

aisle between plant growing rows to capture the phenotypic data of

each plant in the experimental region. Both video data captured by

the RealSense camera at the actual frame rate of 29.72 fps and data

from navigation sensors were recorded in the rosbag format at a

unified timestamp. The MRP inspected and recorded all the data

twice for each tier of plant growing rows. A total of eight videos

were collected in this experiment. Fruit detection was performed on

the eight videos. The number of ripe strawberry fruit in the results

produced by the detection algorithm, nCGT , was manually counted as

the ground truth of the fruit counting algorithm to exclude the

impact of the fruit detection algorithm and evaluate the

performance of the fruit counting algorithm alone. The yield

monitoring algorithm results, n, were then estimated using the

proposed algorithm without multi-sequence averaging (one of the

three postprocessing techniques mentioned in Section 3.2.2). The

thresholds es and is, mentioned in Algorithm 1, can be determined

by selecting a number of smaller relative error rates of fruit

counting, errC , calculated by Equation 7.

errC =
n − nCGT
�� ��

nCGT
� 100%         (7)
4.3 Inspection capability

In this experiment, the inspection capability of MRP was tested

at various traveling speeds of 0.2, 0.3, and 0.4 m/s. The inspection

capability was a system performance that included mobility for

multiple- location data acquisit ion and monitoring of

strawberry yield.

4.3.1 Motion control
The experiment in this study was conducted three times to test

the motion control performance of MRP at three different traveling

speeds. In the navigation mode, MRP was programmed to start

from the first tag (Tag 5) and stop at the last tag (Tag 23) position in

the aisle. The distance error, linear velocity, yaw error, and angular

velocity of the MRP were recorded in the rosbag format with a

frame rate of 50 Hz as the errors and outputs of the control system.
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Motion stability and angular tracking accuracy were considered to

evaluate the effectiveness of the proposed method.
4.3.2 Yield monitoring
The accuracy of the yield monitoring algorithm is a system

performance to evaluate both fruit detection and counting

processes. The variables   r, i, and e corresponding to three

different traveling speeds could be calculated by repeating the

operations mentioned in Section 4.2.2 in the same experimental

area on different dates. This experiment was conducted three times

to test the accuracy of the yield monitoring algorithm at three

traveling speeds of MRP. For each experiment, MRP inspected and

recorded all the data twice for one of the four tiers of the plant

growing rows. A total of 24 videos were collected in this experiment.

The number of ripe strawberries in the raw video, nYGT , was

determined by growers as the ground truth of the yield. The

relative error rate of yield monitoring, errY , could be calculated

by Equation 8.

errY =
n − nYGT
�� ��

nYGT
� 100%         (8)
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5 Results and discussion

5.1 Navigation capability

5.1.1 Mapping
As shown in Figure 8, two continuous and smooth trajectories

were obtained using our ATI mapping approach (a and b). The two

trajectories almost coincided before Tag 27. The trajectory in

Figure 8B was the non-optimized result, which the MRP was not

able to return to the charging pile (origin) due to cumulative errors

of the system. Figure 8A shows the mapping trajectory processed by

the ATI mapping approach with the loop closing optimization that

was accomplished by making the path defined by Tags 0, 1, 2, and 3

the beginning segment and the path defined by Tags 3, 2, 1, and 0

the ending segment of the trajectory. The beginning tags (numbers

0, 1, 2, and 3) were detected in a reversed order when MRP was on

the way back to the starting point, Tag 0. The global PGO was

successfully performed to eliminate the cumulative errors and

obtain a consistent and undistorted trajectory during the mapping

process. The mapping trajectory coincided with the AprilTags

pasted on the ground in the experimental area (Figure 7).
B

C

A

FIGURE 8

Comparison of trajectories obtained by the three mapping approaches running in the experimental area. (A) shows the mapping trajectory
processed by the ATI mapping approach with the loop closing optimization. (B) shows the mapping trajectory processed by the ATI mapping
approach without the loop closing optimization. (C) shows the mapping trajectory processed by the LIO-SAM algorithm with optimized parameters.
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In contrast, a jittery mapping trajectory was obtained by LIO-

SAM under the same movement of MRP (Figure 8C). Degeneracy

occurred when MRP traveled back and turned to a new long aisle,

i.e., starting from the position of Tag 25 in Figure 7. The estimated

odometry oscillated around the same position. It is worth

mentioning that the mapping results presented in Figure 8C were

obtained by the LIO-SAM algorithm with optimized parameters.

The original LIO-SAM failed at the second turn of the inspection

route, i.e., starting from the position of Tag 4 in Figure 7. The

experimental results show that the LiDAR-based SLAM algorithm

failed in the environment of the plant factory. Our ATI navigation

algorithm was effective and robust in the mapping process.

5.1.2 Localization
In the PA experiment, Tags 8, 12, and 21 were selected as target

positions (Figure 7). Tests were repeated five times for each tag. The

range of RMSE of each tag was found to be between 8.6 and 14.8

mm (Table 1). The overall RMSE of PA was 13.0 mm. Each tag

could be effectively observed using the proposed ATI navigation

algorithm, which showed the robustness of the positioning system.

The positioning results of the algorithm in the x and y directions are

all biased to the same side (Tables 2, 3). The external parameters

among the wheel encoders, IMU, and monocular camera were

estimated from the mechanical drawings with no calibration

process in this research. The PA of the system could be further

improved by automatic and accurate calibration of the navigation

sensors and the optimization of fusion of wheel encoders and IMU.
5.2 Fruit counting capability

The best model weight was chosen according to the mAP@0.5

value of 0.994 for ripe strawberries calculated on the validation set.

We have found that an mAP@0.5 value of 0.945 could be obtained

on the test set. Strawberry growth scenes with occlusions could be

identified accurately by the fruit detection model.

We have found that there was little change in it and i when the

value of r was more than 15 and the value of v was 0.2, 0.3, or 0.4 m/

s. The value of r was set from 2 to 15, and the value of v was 0.3 m/s

in this experiment. The corresponding i and e values and the

relative error rate of fruit counting, errC , were computed and are

shown in Table 4 in ascending order according to e values. The

value of errC generally increased as the increase of e. When the value

of e was more than 0.1, the errC was relatively large and fluctuated.

When the value of i was relatively small, the impact of e on errC was
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more obvious. The value of isas set as 4 through the observation of

the experimental results. In this experiment, the values of r were

chosen as 15, 10, and 6. The final errC was computed as 3.3%. There

also existed several limitations. We assumed that the value of d was

constant. However, the variance in the distance between

strawberries and the RealSense camera existed in the production

scene, which affected the accuracy of the algorithm. The problem

could be addressed by dynamically introducing accurate values of d

captured by the depth camera into the algorithm. When v is high,

the overlaps of two neighboring frames will be fewer. This will, in

turn, limit the range of r values and the tolerable error rate will

become smaller.
5.3 Inspection capability

5.3.1 Motion control
The motion control system worked stably at the nominal MRP

traveling speeds of 0.2, 0.3, and 0.4 m/s. The performance of the

distance controller and heading controller at various speeds is

shown in Figure 9. The inspection durations at the three set

speeds are 113.6, 78.6, and 62.1 s, respectively. The overall

average speeds are 0.189, 0.273, and 0.346 m/s, respectively.

On the left of the figure, the blue lines represented the distance

between MRP and the target position in the local path planner

(Section 3.1), Dislocal , during the navigation process. At the start, the

value of Dislocal was approximately 2.4 m, which was the distance

between Tag 5 and Tag 7. As the robot moved forward, the value of

Dislocal decreased linearly. When the MRP reached Tag 6, the local

target was updated to Tag 8. At this time, the value of Dislocal
returned to approximately 2.4 m, which was the distance between

Tag 6 and Tag 8. When the MRP reached Tag 22, the local target

was no longer updated. The value of Dislocal faded to zero as the

robot moved towards the global target, Tag 23. MRP accelerated

from zero to a set traveling speed, maintained the speed during the

inspection, and gradually decelerated until reaching the global

target, Tag 23, without an overshoot. On the right of the figure,

the red lines represented the heading from MRP to the target

position in the local path planner, Yawlocal , during the navigation

process. The value of Yawlocal was within 0.01 rad most of the time

and occasionally rose to 0.03 rad due to the updates of the target

positions in the local path planner, which had little effect on the

phenotypic data acquisition. The control system ensured smooth

and low-error motions at various traveling speeds of MRP for stable

quality of video collection.
TABLE 1 Positioning accuracy of the ATI navigation algorithm.

Tag ID
err_d (mm) RMSE

(Tag)
RMSE
(All)1 2 3 4 5 Avg

8 9.6 10.5 8.5 7.2 6.9 8.5 8.6

13.012 17.2 16.8 12.6 12.5 14.0 14.6 14.8

21 13.1 16.6 17.1 16.6 6.6 14.0 14.5
fronti
err _ d, distance deviation is the Euclidean distance between the current position of the tag in the image coordinate system and the position of the tag in the map generated by the ATI navigation
algorithm.
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5.3.2 Yield monitoring
The errC and errY of 24 test videos (8 videos per MRP traveling

speed) were calculated and shown in Table 5. We found that the

system showed robust monitoring results at various MRP traveling

speeds, of which errC was between 2% and 3%, and errY was

between 6% and 10%. The best yield estimation performance was

found to have an error rate of 6.26% at the MRP traveling speed of

0.2 m/s. The four ties of plant growing row in the experimental area

corresponded to the four strawberry growth densities. Our
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algorithm had high robustness when dealing with scenes with

various fruit densities.

The same strawberry appeared differently in various frames due

to the changes in shooting angles during the movement of MRP. An

unripe strawberry might be detected as a ripe or unripe one from

various angles due to the distribution of red color on the fruit, which

made nYGT smaller than nCGT . The proposed yield monitoring

approach is a detection-based pipeline, in which false detections

caused the higher errY . In order to meet the above challenges and
TABLE 2 Positioning accuracy in the x direction of the ATI navigation algorithm.

Tag ID
err_x(mm) RMSE

(Tag)
PA
(x)1 2 3 4 5 Avg

8 −9.1 −10.4 −8.3 −5.9 −5.1 −7.8 8.0

11.212 −16.5 −14.4 −10.1 −11.1 −11.5 −12.7 12.9

21 −8.6 −15.2 −16.2 −11.7 5.2 −9.3 12.1
frontiers
TABLE 3 Positioning accuracy in the y direction of the ATI navigation algorithm.

Tag ID
err_y (mm) RMSE

(Tag)
PA
(y)1 2 3 4 5 Avg

8 −3.2 −0.8 −2.0 −4.1 −4.6 −2.9 3.2

6.512 −4.7 −8.7 −7.6 −5.8 −8.0 −7.0 7.1

21 −9.9 −6.7 −5.4 −11.8 −4.0 −7.6 8.1
i

TABLE 4 The relative error rate of fruit counting under different algorithm setups.

Setup Counting results of various videos
Avg errc

r it i e 1_1 1_2 2_1 2_2 3_1 3_2 4_1 4_2

15 2.029 2 0.029 28 29 31 31 43 46 37 36 0.032

10 3.044 3 0.044 28 29 31 31 43 46 37 36 0.032

6 5.073 5 0.073 29 29 30 31 43 46 37 35 0.035

5 6.088 6 0.088 28 29 31 31 43 47 37 35 0.038

3 10.146 10 0.146 30 26 29 30 44 46 36 35 0.052

14 2.174 2 0.174 30 31 33 34 46 49 40 38 0.049

8 3.805 4 0.195 27 27 30 30 41 42 35 34 0.072

2 15.219 15 0.219 28 29 31 29 44 49 36 33 0.059

11 2.767 3 0.233 25 26 28 28 39 42 34 32 0.116

13 2.341 2 0.341 33 33 36 36 50 53 43 41 0.133

7 4.348 4 0.348 31 31 34 34 46 48 40 39 0.058

9 3.382 3 0.382 31 32 34 34 48 51 41 40 0.083

4 7.610 8 0.390 27 27 30 30 41 42 35 34 0.072

12 2.537 3 0.4635 23 24 26 26 36 38 31 30 0.185

nCGT 30 30 32 32 44 44 37 37
1_1 and 1_2 are the first and second videos of strawberries grown on the first tier, respectively. Avg   errC is the average relative error rate of fruit counting, nCGT is the number of ripe strawberry
fruit in the detection results.
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obtain higher yield estimation accuracy, there exists a potential

solution, which is to process with the original video data. Videos

captured by the MRP could provide both spatial and temporal

information for better tracking and detecting a single fruit.

However, a large amount of needed computational time was the

limitation of this solution.
6 Conclusion

In this study, we have developed software and hardware of an

MRP, consisting of an AMR and an MPR, which can capture
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temporal–spatial phenotypic data within the whole strawberry

factory. This paper reported two basic capabilities of the MRP,

navigation for multiple-location data acquisition and strawberry

yield monitoring. An ATI navigation algorithm was developed to

address the challenges of accurate navigation within the

repetitive and narrow structural environments of a plant

factory. The MRP performed robustly at various traveling

speeds tested with a PA of 13.0 mm. A counting-from-video

yield monitoring method that incorporated keyframes

extraction, fruit detection, and postprocessing technologies was

presented to process the video data captured by MRP’s

inspection for production management and harvesting
FIGURE 9

The performance of distance and heading controller at various MRP speeds.
TABLE 5 Yield monitoring performance comparison at various speeds of MRP.

Setup Video
ID

n
Avg errc Avg errY

v (m/s) r i e T1 T2 T3 T4

0.2
15 3 0.044 1 34 52 87 70

0.0265 0.0626
9 5 0.073 2 35 55 88 69

0.3

15 2 0.029 1 37 54 88 71

0.0229 0.090510 3 0.044
2 36 53 90 72

6 5 0.073

0.4
11 2 0.075 1 37 51 85 71

0.0252 0.0711
6 4 0.195 2 38 52 84 70

nCGT 1 36 54 85 70

nYGT 2 32 51 83 65
fro
T1 is the first tier of the plant growing row in the experimental area. n is the result of the yield monitoring algorithm. nCGT is the number of ripe strawberry fruit in the detection results. nYGT is the

number of ripe strawberries in the raw video. errC is the relative error rate of fruit counting.  errY is the relative error rate of yield monitoring.
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schedules. The yield monitoring performance was found to have

an error rate of 6.26% when the plants were inspected at a

constant MRP traveling speed of 0.2 m/s. The temporal–spatial

phenotypic data within the whole strawberry factory captured by

the MRP could be further used to dynamically understand plant

growth and provide data support for growth model construction

and production management. The MRP’s functions are expected

to be transferable and expandable to other crop production

monitoring and cultural tasks.
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