13,984 research outputs found
Cooling a micro-mechanical resonator by quantum back-action from a noisy qubit
We study the role of qubit dephasing in cooling a mechanical resonator by
quantum back-action. With a superconducting flux qubit as a specific example,
we show that ground-state cooling of a mechanical resonator can only be
realized if the qubit dephasing rate is sufficiently low.Comment: 5 pages, 3 figure
High threshold distributed quantum computing with three-qubit nodes
In the distributed quantum computing paradigm, well-controlled few-qubit
`nodes' are networked together by connections which are relatively noisy and
failure prone. A practical scheme must offer high tolerance to errors while
requiring only simple (i.e. few-qubit) nodes. Here we show that relatively
modest, three-qubit nodes can support advanced purification techniques and so
offer robust scalability: the infidelity in the entanglement channel may be
permitted to approach 10% if the infidelity in local operations is of order
0.1%. Our tolerance of network noise is therefore a order of magnitude beyond
prior schemes, and our architecture remains robust even in the presence of
considerable decoherence rates (memory errors). We compare the performance with
that of schemes involving nodes of lower and higher complexity. Ion traps, and
NV- centres in diamond, are two highly relevant emerging technologies.Comment: 5 figures, 12 pages in single column format. Revision has more
detailed comparison with prior scheme
Fully fault tolerant quantum computation with non-deterministic gates
In certain approaches to quantum computing the operations between qubits are
non-deterministic and likely to fail. For example, a distributed quantum
processor would achieve scalability by networking together many small
components; operations between components should assumed to be failure prone.
In the logical limit of this architecture each component contains only one
qubit. Here we derive thresholds for fault tolerant quantum computation under
such extreme paradigms. We find that computation is supported for remarkably
high failure rates (exceeding 90%) providing that failures are heralded,
meanwhile the rate of unknown errors should not exceed 2 in 10^4 operations.Comment: 5 pages, 3 fig
Dynamical transitions and sliding friction of the phase-field-crystal model with pinning
We study the nonlinear driven response and sliding friction behavior of the
phase-field-crystal (PFC) model with pinning including both thermal
fluctuations and inertial effects. The model provides a continuous description
of adsorbed layers on a substrate under the action of an external driving force
at finite temperatures, allowing for both elastic and plastic deformations. We
derive general stochastic dynamical equations for the particle and momentum
densities including both thermal fluctuations and inertial effects. The
resulting coupled equations for the PFC model are studied numerically. At
sufficiently low temperatures we find that the velocity response of an
initially pinned commensurate layer shows hysteresis with dynamical melting and
freezing transitions for increasing and decreasing applied forces at different
critical values. The main features of the nonlinear response in the PFC model
are similar to the results obtained previously with molecular dynamics
simulations of particle models for adsorbed layers.Comment: 7 pages, 8 figures, to appear in Physcial Review
OwnCloud x Etherpad: um levantamento das características implementadas para edição colaborativa em tempo real de documentos institucionais.
O Núcleo de Desenvolvimento Institucional (NDI) da Embrapa Informática Agropecuária é responsável pela condução do processo de revisão do seu planejamento estratégico (PE). Neste processo, documentos institucionais em formato digital são submetidos à validação dos empregados e/ou são construídos por eles de forma colaborativa de acordo com a realidade desta Unidade de pesquisa
Glassy phases and driven response of the phase-field-crystal model with random pinning
We study the structural correlations and the nonlinear response to a driving
force of a two-dimensional phase-field-crystal model with random pinning. The
model provides an effective continuous description of lattice systems in the
presence of disordered external pinning centers, allowing for both elastic and
plastic deformations. We find that the phase-field crystal with disorder
assumes an amorphous glassy ground state, with only short-ranged positional and
orientational correlations even in the limit of weak disorder. Under increasing
driving force, the pinned amorphous-glass phase evolves into a moving
plastic-flow phase and then finally a moving smectic phase. The transverse
response of the moving smectic phase shows a vanishing transverse critical
force for increasing system sizes
Evidence Favoring a Positive Feedback Loop for Physiologic Auto Upregulation of hnRNP-E1 during Prolonged Folate Deficiency in Human Placental Cells
Background: Previously, we determined that heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) functions as an intracellular physiologic sensor of folate deficiency. In this model, l-homocysteine, which accumulates intracellularly in proportion to the extent of folate deficiency, covalently binds to and thereby activates homocysteinylated hnRNP-E1 to interact with folate receptor-α mRNA; this high-affinity interaction triggers the translational upregulation of cell surface folate receptors, which enables cells to optimize folate uptake from the external milieu. However, integral to this model is the need for ongoing generation of hnRNP-E1 to replenish homocysteinylated hnRNP-E1 that is degraded.Objective: We searched for an interrelated physiologic mechanism that could also maintain the steady-state concentration of hnRNP-E1 during prolonged folate deficiency.Methods: A novel RNA-protein interaction was functionally characterized by using molecular and biochemical approaches in vitro and in vivo.Results: l-homocysteine triggered a dose-dependent high-affinity interaction between hnRNP-E1 and a 25-nucleotide cis element within the 5'-untranslated region of hnRNP-E1 mRNA; this led to a proportionate increase in these RNA-protein complexes, and translation of hnRNP-E1 both in vitro and within placental cells. Targeted perturbation of this RNA-protein interaction either by specific 25-nucleotide antisense oligonucleotides or mutation within this cis element or by small interfering RNA to hnRNP-E1 mRNA significantly reduced cellular biosynthesis of hnRNP-E1. Conversely, transfection of hnRNP-E1 mutant proteins that mimicked homocysteinylated hnRNP-E1 stimulated both cellular hnRNP-E1 and folate receptor biosynthesis. In addition, ferrous sulfate heptahydrate [iron(II)], which also binds hnRNP-E1, significantly perturbed this l-homocysteine-triggered RNA-protein interaction in a dose-dependent manner. Finally, folate deficiency induced dual upregulation of hnRNP-E1 and folate receptors in cultured human cells and tumor xenografts, and more selectively in various fetal tissues of folate-deficient dams.Conclusions: This novel positive feedback loop amplifies hnRNP-E1 during prolonged folate deficiency and thereby maximizes upregulation of folate receptors in order to restore folate homeostasis toward normalcy in placental cells. It will also functionally impact several other mRNAs of the nutrition-sensitive, folate-responsive posttranscriptional RNA operon that is orchestrated by homocysteinylated hnRNP-E1
- …