We study the structural correlations and the nonlinear response to a driving
force of a two-dimensional phase-field-crystal model with random pinning. The
model provides an effective continuous description of lattice systems in the
presence of disordered external pinning centers, allowing for both elastic and
plastic deformations. We find that the phase-field crystal with disorder
assumes an amorphous glassy ground state, with only short-ranged positional and
orientational correlations even in the limit of weak disorder. Under increasing
driving force, the pinned amorphous-glass phase evolves into a moving
plastic-flow phase and then finally a moving smectic phase. The transverse
response of the moving smectic phase shows a vanishing transverse critical
force for increasing system sizes