11 research outputs found

    ClickINC: In-network Computing as a Service in Heterogeneous Programmable Data-center Networks

    Full text link
    In-Network Computing (INC) has found many applications for performance boosts or cost reduction. However, given heterogeneous devices, diverse applications, and multi-path network typologies, it is cumbersome and error-prone for application developers to effectively utilize the available network resources and gain predictable benefits without impeding normal network functions. Previous work is oriented to network operators more than application developers. We develop ClickINC to streamline the INC programming and deployment using a unified and automated workflow. ClickINC provides INC developers a modular programming abstractions, without concerning to the states of the devices and the network topology. We describe the ClickINC framework, model, language, workflow, and corresponding algorithms. Experiments on both an emulator and a prototype system demonstrate its feasibility and benefits

    Adaptive Finite-Time Backstepping Integral Sliding Mode Control of Three-Degree-of-Freedom Stabilized System for Ship Propulsion-Assisted Sail Based on the Inverse System Method

    No full text
    The three-degree-of-freedom (3-DOF) stabilized control system for ship propulsion-assisted sails is used to control the 3-DOF motion of sails to obtain offshore wind energy. The attitude of the sail is adjusted to ensure optimal thrust along the target course. An adaptive finite-time backstepping integral sliding mode control based on the inverse system method (ABISMC-ISM) is presented for attitude tracking of the sail. Considering the nonlinear dynamics and strong coupling of the system, a decoupling strategy is established using the inverse system method (ISM). Constructing inverse dynamics to eliminate internal coupling, the system is transformed into independent pseudolinear subsystems. For the decoupled open-loop subsystems, an adaptive finite-time backstepping integral sliding mode control is designed to achieve closed-loop control. A backstepping-based integral sliding surface is proposed to eliminate the phase-reaching stage of the sliding surface. Considering the unmodelled dynamics and external disturbances, an adaptive extreme learning machine (AELM) was designed to estimate the disturbances. Furthermore, a sliding mode reaching law based on finite-time theory was employed to ensure that the system returns to the sliding surface in a finite time under chattering conditions. Experiments on a principle prototype demonstrate the effectiveness and energy-saving performance of the proposed method

    Prognostic Value of Endothelial Progenitor Cells in Acute Myocardial Infarction Patients

    No full text
    Objective. To determine prognostic role of endothelial progenitor cells (EPCs) in intensive care patients with acute myocardial infarction (AMI). Materials and Methods. From December 2018 to July 2021, a total of 91 eligible patients with AMI were consecutively examined in a single intensive care unit (ICU) in China. Patients with a history of acute coronary artery disease were excluded from the study. Samples were collected within 24 hr of onset of symptoms. EPCs, defined as coexpression of CD34+/CD133+ cells or CD133+/CD34+/KDR+, were studied using flow cytometry and categorized by quartiles. Based on the 28-days mortality outcome, the patients were further divided into two groups: death and survival. The study incorporated various variables, including cardiovascular risk factors such as body mass index, hypertension, diabetes, hypercholesterolemia, atherosclerotic burden, and medication history, as well as clinical characteristics such as APACHEⅡscore, central venous-arterial carbon dioxide difference (GAP), homocysteine, creatinine, C-reactive protein, HbAlc, and cardiac index. Cox regression analysis was employed to conduct a multivariate analysis. Results. A total of 91 patients with AMI who were admitted to the ICU were deemed eligible for inclusion in the study. Among these patients, 23 (25.3%) died from various causes during the follow-up period. The counts of EPCs were found to be significantly higher in the survival group compared to the death group (P<0.05). In the univariate analysis, it was observed that the 28-days mortality rate was associated with the several factors, including the APACHEⅡscore (P=0.00), vasoactive inotropic score (P=0.03), GAP (P=0.00), HCY (P=0.00), creatinine (P=0.00), C-reactive protein (P=0.00), HbAlc (P=0.00), CI (P=0.01), quartiles of CD34+/CD133+ cells (P=0.00), and quartiles of CD34+/CD133+/KDR+ cells (P=0.00). CD34+/CD133+/KDR+ cells retained statistical significance in Cox regression models even after controlling for clinical variables (HR: 6.258 × 10−10 and P=0.001). Nevertheless, no significant correlation was observed between CD34+/CD133+ cells and all-cause mortality. Conclusions. The decreased EPCs levels, especially for CD34+/CD133+/KDR+ cells subsets, were an independent risk factor for 28-days mortality in AMI patients
    corecore