77 research outputs found

    Improved cellulolytic efficacy in Penicilium decumbens via heterologous expression of Hypocrea jecorina endoglucanase II

    Get PDF
    Hypocrea jecorina endoglucanase II (Hjegl2) was heterologously expressed in Penicillium decumbens (yielding strain Pd::Hjegl2). After induction in cellulose containing media, strain Pd::Hjeg2 displayed increased carboxymethylcellulase activity (CMCase, 5.77 IU/ml, representing a 21% increase) and cellulose degradation determined with a filter paper assay (FPA, 0.40 IU/ml, 67% increase), as compared to the parent strain. In media supplemented with glucose (2%), Pd::Hjegl2, displayed 51.2-fold and 3-fold higher CMCase and FPA activities, respectively, as compared to the parent strain. No changes in the expression levels of the four main native cellulase genes of P. decumbens (Pdegl1, Pdegl2, Pdcbh1, and Pdcbh2) were noted between the transformant and wild-type strains. These data support the idea that Hjegl2 cleaves both internal and terminal glycosidic residues, in a relatively random and processive manner. In situ polyacrylamide gelactivity staining of extracts derived from wild-type and Pd::Hjegl2 revealed two additional active fractions in the latter strain; one with a molecular mass ~50-65 KDa and another ~80-116 kDa

    Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system

    Get PDF
    Additional file 2: Table S1. The functional annotations of proteins identified in the proteome of SP. Mass spectrometry-based proteomics study was performed to comprehensively dissect the lignocellulolytic enzyme profile of SP. Accession, Protein name, PSM, Calc. MW, CBM, Calc. pI and CAZy family of identified proteins were shown

    Konferencija Što činimo po pitanju transparentnosti

    Get PDF
    Additional file 2: Figure S2. PCR and phenotypic analysis of the Δcre1 strain T. reesei SDC11. a PCR analysis of T. reesei SDC11 with SP4 as control. 1 and 2 represent the fragment (upstream region and open reading frame of gene cre1) amplificated by the prime pair cre1-2426UF/cre1-1069R in T. reesei SDC11 and SP4, respectively; 3 and 4 represent the internal fragment of gene cre1 amplificated by the prime pair cre1-497F/cre1-1069R in T. reesei SDC11 and SP4, respectively. 5 and 6 represent the fragment of gene pyrG amplificated by the prime pair pyrG-UF1/pyrG-2426DR in T. reesei SDC11 and SCP11, respectively. b Southern blot analysis of the genomic DNA isolated from SP4 and SCP11, which were digested with EcoRI/HindIII. A 5.5-kb fragment is present in the parental strain SP4, and a 7.0-kb band is shown in Δcre1 + pyrG strain SCP11. c Growth of T. reesei SN1, Δcre1 + pyrG strain SCP11 and Δcre1 strain SDC11 on MM plate. d Growth of T. reesei SP4, Δcre1 + pyrG strain SCP11 and Δcre1 strain SDC11 on the MM plate containing uracil (0.1%)

    A Homeodomain-Containing Transcriptional Factor PoHtf1 Regulated the Development and Cellulase Expression in Penicillium oxalicum

    Get PDF
    Homeodomain-containing transcription factors (Htfs) play important roles in animals, fungi, and plants during some developmental processes. Here, a homeodomain-containing transcription factor PoHtf1 was functionally characterized in the cellulase-producing fungi Penicillium oxalicum 114-2. PoHtf1 was shown to participate in colony growth and conidiation through regulating the expression of its downstream transcription factor BrlA, the key regulator of conidiation in P. oxalicum 114-2. Additionally, PoHtf1 inhibited the expression of the major cellulase genes by coordinated regulation of cellulolytic regulators CreA, AmyR, ClrB, and XlnR. Furthermore, transcriptome analysis showed that PoHtf1 participated in the secondary metabolism including the pathway synthesizing conidial yellow pigment. These data show that PoHtf1 mediates the complex transcriptional-regulatory network cascade between developmental processes and cellulolytic gene expression in P. oxalicum 114-2. Our results should assist the development of strategies for the metabolic engineering of mutants for applications in the enzymatic hydrolysis for biochemical production

    Specific Release of Bacteriochlorophylls B800 of LH2 from Rhodobacter azotoformans Induced by Sodium Dodecyl Sulfate

    Get PDF
    The release behaviors of bacteriochlorophylls of peripheral light-harvesting complex LH2 from Rhodobacter azotoformans induced by sodium dodecyl sulfate (SDS) were investigated using absorption spectroscopy. The results indicated that bacteriochlorophylls of B800 band are released from their binding sites and transformed into free bacteriochlorophylls by incubating LH2 sample in 10 mmol.L-1 Tris-HCl (pH 8.0) buffer containing SDS of low concentration at room temperature. However, the bacteriochlorophylls of B850 band are not released. The dynamics of B800 release and free BChl formation induced by 0.08% (w/V) SDS can be well fitted by the monoexponential model. The rate constant of B800 release is nearly equal to that of free BChls formation. The release of both B800 and B850 of LH2 can be induced by high concentration SDS, simultaneously. The bacteriochlorophylls of B800 band can be completely transformed into free BChls, but not for B850. Although both of their release processes show monoexponential models in 1% SDS solution, the release rate constant of B850 is remarkably lower than that of B800 and close to that of free BChls formation.国家自然科学基金(No. 30970068)、国家科技基础条件平台建设(No. 2005DKA21209)、厦门大学近海海洋环境科学国家重点实验室高级访问学者基 金(No. MELRS0907)和山西省回国留学人员科研(No. 200713)资助项目

    Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water

    Get PDF
    Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW) pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs) from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180°C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50°C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield

    2012) Enzymatic saccharification and ethanol fermentation of reed pretreated with liquid hot

    No full text
    Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW) pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs) from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180 • C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50 • C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield

    Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production.

    No full text
    Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism
    corecore