593 research outputs found

    Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection

    Get PDF
    Plasmonic nanolasers and spasers continue to attract a great deal of interest from the physics and nanophotonics community, with the experimental observation of lasing as a focus of research. We report the observation of continuous wave lasing in metallic cavities of deep subwavelength sizes under electrical injection, operating at room temperature. The volume of the nanolaser is as small as 0.42¿3, where ¿ = 1.55 µm is the lasing wavelength. This demonstration will help answer the question of how small a nanolaser can be made, and will likely stimulate a wide range of fundamental studies in basic laser physics and quantum optics on truly subwavelength scales. In addition, such nanolasers may lead to many potential applications, such as on-chip integrated photonic systems for communication, computing, and detection

    Families of N=2 Strings

    Get PDF
    In a given 4d spacetime bakcground, one can often construct not one but a family of distinct N=2 string theories. This is due to the multiple ways N=2 superconformal algebra can be embedded in a given worldsheet theory. We formulate the principle of obtaining different physical theories by gauging different embeddings of the same symmetry algebra in the same ``pre-theory.'' We then apply it to N=2 strings and formulate the recipe for finding the associated parameter spaces of gauging. Flat and curved target spaces of both (4,0) and (2,2) signatures are considered. We broadly divide the gauging choices into two classes, denoted by alpha and beta, and show them to be related by T-duality. The distinction between them is formulated topologically and hinges on some unique properties of 4d manifolds. We determine what their parameter spaces of gauging are under certain simplicity ansatz for generic flat spaces (R^4 and its toroidal compactifications) as well as some curved spaces. We briefly discuss the spectra of D-branes for both alpha and beta families.Comment: 66+1 pages, 2 tables, latex 2e, hyperref. ver2: typos corrected, reference adde

    Uniaxial Phase Transition in Si : Ab initio Calculations

    Full text link
    Based on a previously proposed thermodynamic analysis, we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different conributions to the relative pahse stability, we identified the most important factors in reducing the phase-transition pressures at uniaxial compression. We also show that it is possible to have phase transitions occur only when the phases are under uniaxial compression, in spite of no phase transition when under hydrostatic commpression. Taking all five phases into consideration, the phase diagram at uniaxial compression was constructed for pressures under 20 GPa. The stable phases were found to be diamond, beta-tin and sh structures, i.e. the same as those when under hydrostatic condition. According to the phase diagram, direct phase transition from the diamond to the sh phase is possible if the applied uniaxial pressures, on increasing, satisfy the condition of Px>Pz. Simiilarly, the sh-to-beta-tin transition on increeasing pressures is also possible if the applied uniaxial pressures are varied from the condition of Px>Pz, on which the phase of sh is stable, to that of Px<Pz, on which the beta-tin is stable

    Effects of metallic spacer in layered superconducting Sr2(Mgy_yTi1−y_{1-y})O3FeAs

    Full text link
    The highly two-dimensional superconducting system Sr2(Mgy_yTi1−y_{1-y})O3FeAs, recently synthesized in the range of 0.2 < y < 0.5, shows an Mg concentration-dependent TcT_c. Reducing the Mg concentration from y=0.5 leads to a sudden increase in TcT_c, with a maximum TcT_c ~40 K at y=0.2. Using first principles calculations, the unsynthesized stoichiometric y=0 and the substoichiometric y=0.5 compounds have been investigated. For the 50% Mg-doped phase (y=0.5), Sr2(Mgy_yTi1−y_{1-y})O3 layers are completely insulating spacers between FeAs layers, leading to the fermiology such as that found for other Fe pnictides. At y=0, representing a phase with metallic Sr2TiO3 layers, the Γ\Gamma-centered Fe-derived Fermi surfaces (FSs) considerably shrink or disappear. Instead, three Γ\Gamma-centered Ti FSs appear, and in particular two of them have similar size, like in MgB2. Interestingly, FSs have very low Fermi velocity in large fractions: the lowest being 0.6×106\times10^6 cm/s. Furthermore, our fixed spin moment calculations suggest the possibility of magnetic ordering, with magnetic Ti and nearly nonmagnetic Fe ions. These results indicate a crucial role of Sr2(Mgy_yTi1−y_{1-y})O3 layers in this superconductivity.Comment: 7 pages; Proceedings of ICSM-201

    Optimization of inhomogeneous electron correlation factors in periodic solids

    Full text link
    A method is presented for the optimization of one-body and inhomogeneous two-body terms in correlated electronic wave functions of Jastrow-Slater type. The most general form of inhomogeneous correlation term which is compatible with crystal symmetry is used and the energy is minimized with respect to all parameters using a rapidly convergent iterative approach, based on Monte Carlo sampling of the energy and fitting energy fluctuations. The energy minimization is performed exactly within statistical sampling error for the energy derivatives and the resulting one- and two-body terms of the wave function are found to be well-determined. The largest calculations performed require the optimization of over 3000 parameters. The inhomogeneous two-electron correlation terms are calculated for diamond and rhombohedral graphite. The optimal terms in diamond are found to be approximately homogeneous and isotropic over all ranges of electron separation, but exhibit some inhomogeneity at short- and intermediate-range, whereas those in graphite are found to be homogeneous at short-range, but inhomogeneous and anisotropic at intermediate- and long-range electron separation.Comment: 23 pages, 15 figures, 1 table, REVTeX4, submitted to PR

    Structure and dynamics of Rh surfaces

    Full text link
    Lattice relaxations, surface phonon spectra, surface energies, and work functions are calculated for Rh(100) and Rh(110) surfaces using density-functional theory and the full-potential linearized augmented plane wave method. Both, the local-density approximation and the generalized gradient approximation to the exchange-correlation functional are considered. The force constants are obtained from the directly calculated atomic forces, and the temperature dependence of the surface relaxation is evaluated by minimizing the free energy of the system. The anharmonicity of the atomic vibrations is taken into account within the quasiharmonic approximation. The importance of contributions from different phonons to the surface relaxation is analyzed.Comment: 9 pages, 7 figures, scheduled to appear in Phys. Rev. B, Feb. 15 (1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    How good is regional climate model version 4 in simulating the monsoon onset over Kerala?

    Get PDF
    This study assesses the performance of regional climate model version 4 (RegCM4) in simulating the monsoon onset over Kerala (MOK). It also examines any possible relationship between the onset dates with the summer monsoon rainfall over India as whole as well as each grid points of the India land points and also the moisture inflow into Indian subcontinent. A 30-year long simulation starting from 1979 till 2008 was carried out with the lateral boundary forcings provided by European Centre for Medium Range Weather Forecasts Reanalysis (ERA-interim) at 25 km horizontal resolution. The simulated climatological MOK date is found to be 28th May, while as per the India Meteorological Department, climatological normal onset date is 1st June. The model has performed well in simulating the inter-annual variation of MOK during the study period. The correlation coefficient between model simulated and observed MOK is 0.83 significant at 95% confidence level. In both model and observations, the MOK is weakly correlated with All India Summer Monsoon Rainfall. Again, the model skill was examined through equitable threat score (ETS). The ETS score is high for normal (0.48) and delayed (0.42) onset years, while the score is very low in early onset years. The spatial patterns of rainfall over central India are very similar in early and normal onset years. The model has performed well in reproducing the moisture inflow in to the Indian subcontinent from all the directions in most of the years, but there is no one-to-one relation between different categories of MOK years with total rainfall and net moisture inflow. Based on this study, it is found that RegCM4 reproduces different aspects of MOK reasonably well

    Ab initio study of the beta$-tin->Imma->sh phase transitions in silicon and germanium

    Full text link
    We have investigated the structural sequence of the high-pressure phases of silicon and germanium. We have focussed on the cd->beta-tin->Imma->sh phase transitions. We have used the plane-wave pseudopotential approach to the density-functional theory implemented within the Vienna ab-initio simulation package (VASP). We have determined the equilibrium properties of each structure and the values of the critical parameters including a hysteresis effect at the phase transitions. The order of the phase transitions has been obtained alternatively from the pressure dependence of the enthalpy and of the internal structure parameters. The commonly used tangent construction is shown to be very unreliable. Our calculations identify a first-order phase transition from the cd to the beta-tin and from the Imma to the sh phase, and they indicate the possibility of a second-order phase-transition from the beta-tin to the Imma phase. Finally, we have derived the enthalpy barriers between the phases.Comment: 12 pages, 16 figure

    An Effective-Medium Tight-Binding Model for Silicon

    Full text link
    A new method for calculating the total energy of Si systems is presented. The method is based on the effective-medium theory concept of a reference system. Instead of calculating the energy of an atom in the system of interest a reference system is introduced where the local surroundings are similar. The energy of the reference system can be calculated selfconsistently once and for all while the energy difference to the reference system can be obtained approximately. We propose to calculate it using the tight-binding LMTO scheme with the Atomic-Sphere Approximation(ASA) for the potential, and by using the ASA with charge-conserving spheres we are able to treat open system without introducing empty spheres. All steps in the calculational method is {\em ab initio} in the sense that all quantities entering are calculated from first principles without any fitting to experiment. A complete and detailed description of the method is given together with test calculations of the energies of phonons, elastic constants, different structures, surfaces and surface reconstructions. We compare the results to calculations using an empirical tight-binding scheme.Comment: 26 pages (11 uuencoded Postscript figures appended), LaTeX, CAMP-090594-
    • …
    corecore