46,449 research outputs found
Sudden stoppage of rotor in a thermally driven rotary motor made from double-walled carbon nanotubes
In a thermally driven rotary motor made from double-walled carbon nanotubes, the rotor (inner tube) can be actuated to rotate within the stator (outer tube) when the environmental temperature is high enough. A sudden stoppage of the rotor can occur when the inner tube has been actuated to rotate at a stable high speed. To find the mechanisms of such sudden stoppages, eight motor models with the same rotor but different stators are built and simulated in the canonical NVT ensembles. Numerical results demonstrate that the sudden stoppage of the rotor occurs when the difference between radii is near 0.34 nm at a high environmental temperature. A smaller difference between radii does not imply easier activation of the sudden rotor stoppage. During rotation, the positions and electron density distribution of atoms at the ends of the motor show that a sp(1) bonded atom on the rotor is attracted by the sp(1) atom with the biggest deviation of radial position on the stator, after which they become two sp(2) atoms. The strong bond interaction between the two atoms leads to the loss of rotational speed of the rotor within 1 ps. Hence, the sudden stoppage is attributed to two factors: the deviation of radial position of atoms at the stator's ends and the drastic thermal vibration of atoms on the rotor in rotation. For a stable motor, sudden stoppage could be avoided by reducing deviation of the radial position of atoms at the stator's ends. A nanobrake can be, thus, achieved by adjusting a sp(1) atom at the ends of stator to stop the rotation of rotor quickly.The authors are grateful for financial support from the National Natural-Science-Foundation of China (Grant Nos. 50908190, 11372100)
Recommended from our members
Two-phase flow and oxygen transport in the perforated gas diffusion layer of proton exchange membrane fuel cell
Liquid water transport in perforated gas diffusion layers (GDLs)is numerically investigated using a three-dimensional (3D)two-phase volume of fluid (VOF)model and a stochastic reconstruction model of GDL microstructures. Different perforation depths and diameters are investigated, in comparison with the GDL without perforation. It is found that perforation can considerably reduce the liquid water level inside a GDL. The perforation diameter (D = 100 μm)and the depth (H = 100 μm)show pronounced effect. In addition, two different perforation locations, i.e. the GDL center and the liquid water break-through point, are investigated. Results show that the latter perforation location works more efficiently. Moreover, the perforation perimeter wettability is studied, and it is found that a hydrophilic region around the perforation further reduces the water saturation. Finally, the oxygen transport in the partially-saturated GDL is studied using an oxygen diffusion model. Results indicate that perforation reduces the oxygen diffusion resistance in GDLs and improves the oxygen concentration at the GDL bottom up to 101% (D = 100 μm and H = 100 μm)
Information criteria for efficient quantum state estimation
Recently several more efficient versions of quantum state tomography have
been proposed, with the purpose of making tomography feasible even for
many-qubit states. The number of state parameters to be estimated is reduced by
tentatively introducing certain simplifying assumptions on the form of the
quantum state, and subsequently using the data to rigorously verify these
assumptions. The simplifying assumptions considered so far were (i) the state
can be well approximated to be of low rank, or (ii) the state can be well
approximated as a matrix product state. We add one more method in that same
spirit: we allow in principle any model for the state, using any (small) number
of parameters (which can, e.g., be chosen to have a clear physical meaning),
and the data are used to verify the model. The proof that this method is valid
cannot be as strict as in above-mentioned cases, but is based on
well-established statistical methods that go under the name of "information
criteria." We exploit here, in particular, the Akaike Information Criterion
(AIC). We illustrate the method by simulating experiments on (noisy) Dicke
states
Signatures of electronic correlations in iron silicide
The intermetallic FeSi exhibits an unusual temperature dependence in its
electronic and magnetic degrees of freedom, epitomized by the crossover from a
low temperature non-magnetic semiconductor to a high temperature paramagnetic
metal with a Curie-Weiss like susceptibility. Many proposals for this
unconventional behavior have been advanced, yet a consensus remains elusive.
Using realistic many-body calculations, we here reproduce the signatures of the
metal-insulator crossover in various observables: the spectral function, the
optical conductivity, the spin susceptibility, and the Seebeck coefficient.
Validated by quantitative agreement with experiment, we then address the
underlying microscopic picture. We propose a new scenario in which FeSi is a
band-insulator at low temperatures and is metalized with increasing temperature
through correlation induced incoherence. We explain that the emergent
incoherence is linked to the unlocking of iron fluctuating moments which are
almost temperature independent at short time scales. Finally, we make explicit
suggestions for improving the thermoelectric performance of FeSi based systems.Comment: 4+ pages, and supplementary materia
Probing the mechanism of electron capture and electron transfer dissociation using tags with variable electron affinity
Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of doubly protonated electron affinity (EA)-tuned peptides were studied to further illuminate the mechanism of these processes. The model peptide FQpSEEQQQTEDELQDK, containing a phosphoserine residue, was converted to EA-tuned peptides via β-elimination and Michael addition of various thiol compounds. These include propanyl, benzyl, 4-cyanobenzyl, perfluorobenzyl, 3,5-dicyanobenzyl, 3-nitrobenzyl, and 3,5-dinitrobenzyl structural moieties, having a range of EA from −1.15 to +1.65 eV, excluding the propanyl group. Typical ECD or ETD backbone fragmentations are completely inhibited in peptides with substituent tags having EA over 1.00 eV, which are referred to as electron predators in this work. Nearly identical rates of electron capture by the dications substituted by the benzyl (EA = −1.15 eV) and 3-nitrobenzyl (EA = 1.00 eV) moieties are observed, which indicates the similarity of electron capture cross sections for the two derivatized peptides. This observation leads to the inference that electron capture kinetics are governed by the long-range electron−dication interaction and are not affected by side chain derivatives with positive EA. Once an electron is captured to high-n Rydberg states, however, through-space or through-bond electron transfer to the EA-tuning tags or low-n Rydberg states via potential curve crossing occurs in competition with transfer to the amide π* orbital. The energetics of these processes are evaluated using time-dependent density functional theory with a series of reduced model systems. The intramolecular electron transfer process is modulated by structure-dependent hydrogen bonds and is heavily affected by the presence and type of electron-withdrawing groups in the EA-tuning tag. The anion radicals formed by electron predators have high proton affinities (approximately 1400 kJ/mol for the 3-nitrobenzyl anion radical) in comparison to other basic sites in the model peptide dication, facilitating exothermic proton transfer from one of the two sites of protonation. This interrupts the normal sequence of events in ECD or ETD, leading to backbone fragmentation by forming a stable radical intermediate. The implications which these results have for previously proposed ECD and ETD mechanisms are discussed
Magnetism and Charge Dynamics in Iron Pnictides
In a wide variety of materials, such as copper oxides, heavy fermions,
organic salts, and the recently discovered iron pnictides, superconductivity is
found in close proximity to a magnetically ordered state. The character of the
proximate magnetic phase is thus believed to be crucial for understanding the
differences between the various families of unconventional superconductors and
the mechanism of superconductivity. Unlike the AFM order in cuprates, the
nature of the magnetism and of the underlying electronic state in the iron
pnictide superconductors is not well understood. Neither density functional
theory nor models based on atomic physics and superexchange, account for the
small size of the magnetic moment. Many low energy probes such as transport,
STM and ARPES measured strong anisotropy of the electronic states akin to the
nematic order in a liquid crystal, but there is no consensus on its physical
origin, and a three dimensional picture of electronic states and its relations
to the optical conductivity in the magnetic state is lacking. Using a first
principles approach, we obtained the experimentally observed magnetic moment,
optical conductivity, and the anisotropy of the electronic states. The theory
connects ARPES, which measures one particle electronic states, optical
spectroscopy, probing the particle hole excitations of the solid and neutron
scattering which measures the magnetic moment. We predict a manifestation of
the anisotropy in the optical conductivity, and we show that the magnetic phase
arises from the paramagnetic phase by a large gain of the Hund's rule coupling
energy and a smaller loss of kinetic energy, indicating that iron pnictides
represent a new class of compounds where the nature of magnetism is
intermediate between the spin density wave of almost independent particles, and
the antiferromagnetic state of local moments.Comment: 4+ pages with additional one-page supplementary materia
Multiple case-study analysis of quality management practices within UK Six Sigma and non-Six Sigma manufacturing small- and medium-sized enterprises
This paper examines multiple case-study analysis of quality management practices within UK Six Sigma and non-Six Sigma manufacturing small- and medium-sized enterprises
- …