5,847 research outputs found

    Herpes simplex keratitis: Challenges in diagnosis and clinical management

    Get PDF
    Herpes simplex virus is responsible for numerous ocular diseases, the most common of which is herpetic stromal keratitis. This is a recurrent infection of the cornea that typically begins with a subclinical infection of the cornea that establishes a latent infection of sensory ganglia, most often the trigeminal ganglia. Recurring infections occur when the virus is reactivated from latency and travels back to the cornea, where it restimulates an inflammatory response. This inflammatory response can lead to decreased corneal sensation, scarring, and blindness. The diagnosis of these lesions as the result of a recurrent herpes simplex virus infection can at times be problematic. Currently, herpetic stromal keratitis is diagnosed by its clinical presentation on the slit-lamp examination, but the literature does not always support the accuracy of these clinical findings. Other diagnostic tests such as polymerase chain reaction assay, enzyme-linked immunosorbent assay, immunofluorescent antibody, and viral cultures have provided more definitive diagnosis, but also have some limitations. That said, accurate diagnosis is necessary for proper treatment, in order to prevent serious consequences. Current treatment reduces the severity of lesions and controls further viral spread, but does not provide a cure

    OAG-BERT: Pre-train Heterogeneous Entity-augmented Academic Language Models

    Full text link
    To enrich language models with domain knowledge is crucial but difficult. Based on the world's largest public academic graph Open Academic Graph (OAG), we pre-train an academic language model, namely OAG-BERT, which integrates massive heterogeneous entities including paper, author, concept, venue, and affiliation. To better endow OAG-BERT with the ability to capture entity information, we develop novel pre-training strategies including heterogeneous entity type embedding, entity-aware 2D positional encoding, and span-aware entity masking. For zero-shot inference, we design a special decoding strategy to allow OAG-BERT to generate entity names from scratch. We evaluate the OAG-BERT on various downstream academic tasks, including NLP benchmarks, zero-shot entity inference, heterogeneous graph link prediction, and author name disambiguation. Results demonstrate the effectiveness of the proposed pre-training approach to both comprehending academic texts and modeling knowledge from heterogeneous entities. OAG-BERT has been deployed to multiple real-world applications, such as reviewer recommendations and paper tagging in the AMiner system. It is also available to the public through the CogDL package

    Effect of polyphenol extract from Zanthoxylum bungeanum Maxim. on endocrine hormones and monoamine oxidase activity in a mouse model of climacteric depression

    Get PDF
    Purpose: To investigate the effects of polyphenol extract from Zanthoxylum bungeanum Maxim. (ZPPC) on endocrine hormones, monoamine  oxidase activity and behavior in a mouse model of climacteric depression.Methods: Institute of Cancer Research (ICR) female albino mice (n = 50) weighing 24 – 26 g (mean wt = 25.0 ± 1.0 g) were randomly assigned to five groups of ten rats each: normal control group, negative control, and ZPPC (50 mg/kg), ZPPC (100 mg/kg) and ZPPC (200 mg/kg) groups. Depression was induced in the mice via oral administration of moclobemide at a dose of 20 mg/kg, and intraperitoneal injection of imipramine (20 mg/kg) 1 h and 30 min, before treatment. Tail suspension, forced swimming and voluntary activity tests were performed on the mice. The activity of monoamine oxidase (MAO) in mouse brain and the levels of endocrine hormones were also determined.Results: Treatment of depressed mice with ZPPC significantly and dose-dependently increased their tail suspension and immobility time (p < 0.05). The activity of monoamine oxidase in the brains of mice in the negative control group was significantly higher than that of normal control mice, but was significantly and dose-dependently reduced by ZPPC treatment (p < 0.05). Similarly, treatment of depressed mice with ZPPC significantly and dose-dependently reduced their serum adrenocorticotropin and corticosterone levels (p < 0.05).Conclusion: The results of this study indicate that ZPPC exerts antidepressant effect via suppression of brain MAO activity. Keywords: Climacteric depression, Endocrine hormones, Menopause, Monoamine oxidase, Polyphenol

    DGI: Easy and Efficient Inference for GNNs

    Full text link
    While many systems have been developed to train Graph Neural Networks (GNNs), efficient model inference and evaluation remain to be addressed. For instance, using the widely adopted node-wise approach, model evaluation can account for up to 94% of the time in the end-to-end training process due to neighbor explosion, which means that a node accesses its multi-hop neighbors. On the other hand, layer-wise inference avoids the neighbor explosion problem by conducting inference layer by layer such that the nodes only need their one-hop neighbors in each layer. However, implementing layer-wise inference requires substantial engineering efforts because users need to manually decompose a GNN model into layers for computation and split workload into batches to fit into device memory. In this paper, we develop Deep Graph Inference (DGI) -- a system for easy and efficient GNN model inference, which automatically translates the training code of a GNN model for layer-wise execution. DGI is general for various GNN models and different kinds of inference requests, and supports out-of-core execution on large graphs that cannot fit in CPU memory. Experimental results show that DGI consistently outperforms layer-wise inference across different datasets and hardware settings, and the speedup can be over 1,000x.Comment: 10 pages, 10 figure

    Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury

    Get PDF
    Acute kidney injury (AKI) is a syndrome of abrupt loss of renal functions. The underlying pathological mechanisms of AKI remain largely unknown. BCL2-interacting protein 3 (BNIP3) has dual functions of regulating cell death and mitophagy, but its pathophysiological role in AKI remains unclear. Here, we demonstrated an increase of BNIP3 expression in cultured renal proximal tubular epithelial cells following oxygen-glucose deprivation-reperfusion (OGD-R) and in renal tubules after renal ischemia-reperfusion (IR)-induced injury in mice. Functionally, silencing Bnip3 by specific short hairpin RNAs in cultured renal tubular cells reduced OGD-R-induced mitophagy, and potentiated OGD-R-induced cell death. In vivo, Bnip3 knockout worsened renal IR injury, as manifested by more severe renal dysfunction and tissue injury. We further showed that Bnip3 knockout reduced mitophagy, which resulted in the accumulation of damaged mitochondria, increased production of reactive oxygen species, and enhanced cell death and inflammatory response in kidneys following renal IR. Taken together, these findings suggest that BNIP3-mediated mitophagy has a critical role in mitochondrial quality control and tubular cell survival during AKI

    Observation of fourfold Dirac nodal line semimetal and its unconventional surface responses in sonic crystals

    Full text link
    Three-dimensional nodal line semimetals (NLSMs) provide remarkable importance for both enrich topological physics and wave management. However, NLSMs realized in acoustic systems are twofold bands degenerate, which are called Weyl NLSMs. Here, we first report on the experimental observation of novel Dirac NLSMs with fourfold degenerate in sonic crystals. We reveal that the topological properties of the Dirac NLSMs are entirely different than that of the conventional Weyl NLSMs. The Berry phase related to the Dirac nodal line (DNL) is 2{\pi}, which results in the surface responses of the Dirac NLSMs with two radically different situations: a torus surface state occupying the entire surface Brillouin zone (SBZ) and without any surface state in the SBZ. We further reveal that topological surface arcs caused by DNL can change from open to closed contours. The findings of Dirac NLSMs and their unique surface response may provoke exciting frontiers for flexible manipulation of acoustic surface waves.Comment: 6 pages, 4 figure

    Activation of β-Adrenoceptors by Dobutamine May Induce a Higher Expression of Peroxisome Proliferator-Activated Receptors δ (PPARδ) in Neonatal Rat Cardiomyocytes

    Get PDF
    Recent evidence showed the role of peroxisome proliferator-activated receptors (PPARs) in cardiac function. Cardiac contraction induced by various agents is critical in restoring the activity of peroxisome proliferator-activated receptors δ (PPARδ) in cardiac myopathy. Because dobutamine is an agent widely used to treat heart failure in emergency setting, this study is aimed to investigate the change of PPARδ in response to dobutamine. Neonatal rat cardiomyocytes were used to examine the effects of dobutamine on PPARδ expression levels and cardiac troponin I (cTnI) phosphorylation via Western blotting analysis. We show that treatment with dobutamine increased PPARδ expression and cTnI phosphorylation in a time- and dose-dependent manner in neonatal rat cardiomyocytes. These increases were blocked by the antagonist of β1-adrenoceptors. Also, the action of dobutamine was related to the increase of calcium ions and diminished by chelating intracellular calcium. Additionally, dobutamine-induced action was reduced by the inhibition of downstream messengers involved in this calcium-related pathway. Moreover, deletion of PPARδ using siRNA generated the reduction of cTnI phosphorylation in cardiomyocytes treated with dobutamine. Thus, we concluded that PPARδ is increased by dobutamine in cardiac cells

    Protection of Pentoxifylline against Testis Injury Induced by Intermittent Hypobaric Hypoxia

    Get PDF
    To investigate the effect of pentoxifylline (PTX) on spermatogenesis dysfunction induced by intermittent hypobaric hypoxia (IHH) and unveil the underlying mechanism, experimental animals were assigned to Control, IHH+Vehicle, and IHH+PTX groups and exposed to 4 cycles of 96 h of hypobaric hypoxia followed by 96 h of normobaric normoxia for 32 days. PTX was administered for 32 days. Blood and tissue samples were collected 7 days thereafter. Serum malondialdehyde levels were used to assess lipid peroxidation; ferric-reducing antioxidant power (FRAP), superoxide dismutase, and catalase and glutathione peroxidase enzyme activities were assessed to determine antioxidant capacity in various samples. Testis histopathology was assessed after hematoxylin-eosin staining by Johnsen’s testicular scoring system. Meanwhile, testosterone synthase and vimentin amounts were assessed by immunohistochemistry. Sperm count, motility, and density were assessed to determine epididymal sperm quality. IHH treatment induced significant pathological changes in testicular tissue and enhanced serum lipid peroxide levels, while reducing serum FRAP, antioxidant enzyme activities, and testosterone synthase expression. Moreover, IHH impaired epididymal sperm quality and vimentin structure in Sertoli cells. Oral administration of PTX improved the pathological changes in the testis. IHH may impair spermatogenesis function of testicular tissues by inducing oxidative stress, but this impairment could be attenuated by administration of PTX

    Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic cardiomyopathy, a diabetes-specific complication, refers to a disorder that eventually leads to left ventricular hypertrophy in addition to diastolic and systolic dysfunction. In recent studies, hyperglycemia-induced reactive oxygen species (ROS) in cardiomyocytes have been linked to diabetic cardiomyopathy. GATA binding protein 4 (GATA-4) regulates the expression of many cardio-structural genes including cardiac troponin-I (cTnI).</p> <p>Methods</p> <p>Streptozotocin-induced diabetic rats and H9c2 embryonic rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr) were used to examine the effect of hyperglycemia on GATA-4 accumulation in the nucleus. cTnI expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of cTnI and GATA-4 by Western blot analysis.</p> <p>Results</p> <p>Cardiac output was lowered in STZ-induced diabetic rats. In addition, higher expressions of cardiac troponin I (cTnI) and phosphorylated GATA-4 were identified in these rats by Western blotting. The changes were reversed by treatment with insulin or phlorizin after correction of the blood sugar level. In H9c2 cells, ROS production owing to the high glucose concentration increased the expression of cTnI and GATA-4 phosphorylation. However, hyperglycemia failed to increase the expression of cTnI when GATA-4 was silenced by small interfering RNA (siRNA) in H9c2 cells. Otherwise, activation of ERK is known to be a signal for phosphorylation of serine105 in GATA-4 to increase the DNA binding ability of this transcription factor. Moreover, GSK3β could directly interact with GATA-4 to cause GATA-4 to be exported from the nucleus. GATA-4 nuclear translocation and GSK3β ser9 phosphorylation were both elevated by a high glucose concentration in H9c2 cells. These changes were reversed by tiron (ROS scavenger), PD98059 (MEK/ERK inhibitor), or siRNA of GATA-4. Cell contractility measurement also indicated that the high glucose concentration decreased the contractility of H9c2 cells, and this was reduced by siRNA of GATA-4.</p> <p>Conclusions</p> <p>Hyperglycemia can cause systolic dysfunction and a higher expression of cTnI in cardiomyocytes through ROS, enhancing MEK/ERK-induced GATA-4 phosphorylation and accumulation in the cell nucleus.</p
    corecore