Observation of fourfold Dirac nodal line semimetal and its unconventional surface responses in sonic crystals

Abstract

Three-dimensional nodal line semimetals (NLSMs) provide remarkable importance for both enrich topological physics and wave management. However, NLSMs realized in acoustic systems are twofold bands degenerate, which are called Weyl NLSMs. Here, we first report on the experimental observation of novel Dirac NLSMs with fourfold degenerate in sonic crystals. We reveal that the topological properties of the Dirac NLSMs are entirely different than that of the conventional Weyl NLSMs. The Berry phase related to the Dirac nodal line (DNL) is 2{\pi}, which results in the surface responses of the Dirac NLSMs with two radically different situations: a torus surface state occupying the entire surface Brillouin zone (SBZ) and without any surface state in the SBZ. We further reveal that topological surface arcs caused by DNL can change from open to closed contours. The findings of Dirac NLSMs and their unique surface response may provoke exciting frontiers for flexible manipulation of acoustic surface waves.Comment: 6 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions