77 research outputs found

    Elicitin-Mediated Plant Resistance

    Get PDF
    Qualitative transcriptional regulatory sequences functional in plants, plant tissue and in plant cells for inducible gene expression and quantitative transcriptional regulatory sequences for increasing the transcriptional expression of downstream genetic information in plants, plant tissue and plant cells are disclosed. Also disclosed are methods and recombinant DNA molecules for improving the disease resistance of transgenic plants, especially wherein an inducible promoter controls the expression of a protein capable of evoking the hypersensitive response in a plant

    Pathogen- or Elicitor-Inducible Transcription Regulatory Element from the Tobacco 5-EPI-Aristolochene Synthase Gene and Plants Transformed Therewith

    Get PDF
    A tobacco epi-5-aristolochene synthase transcriptional regulatory element functional in plants, plant tissue and in plant cells for pathogen inducible gene expression and a method for increasing the transcriptional expression of downstream genetic information in plants, plant tissue and plant cells are disclosed

    Transcriptional Silencing Elements and Their Binding Factors

    Get PDF
    The invention features an isolated gene silencing regulatory element that includes 5\u27 TACNNTAC 3\u27. Vectors, transgenic plants and seeds thereof that include such a gene silencing regulatory element are also disclosed. The invention further provides methods of decreasing the transcription of a DNA sequence in a transgenic plant using the isolated gene silencing regulatory element

    Fabrication of small aspheric moulds using single point inclined axis grinding

    Get PDF
    Single point inclined axis grinding techniques, including the wheel setting, wheel-workpiece interference, error source determination and compensation approaches, were studied to fabricate small aspheric moulds of high profile accuracy. The interference of a cylindrical grinding wheel with the workpiece was analysed and the criteria for selection of wheel geometry for avoiding the interference was proposed. The grinding process was performed with compensation focused on two major error sources, wheel setting error and wheel wear. The grinding results showed that the compensation approach was efficient and the developed grinding process was capable to generate small aspheric concave surfaces on tungsten carbide material with a profile error of smaller than 200. nm in PV value after two to three compensation cycles

    A Challenger to GPT-4V? Early Explorations of Gemini in Visual Expertise

    Full text link
    The surge of interest towards Multi-modal Large Language Models (MLLMs), e.g., GPT-4V(ision) from OpenAI, has marked a significant trend in both academia and industry. They endow Large Language Models (LLMs) with powerful capabilities in visual understanding, enabling them to tackle diverse multi-modal tasks. Very recently, Google released Gemini, its newest and most capable MLLM built from the ground up for multi-modality. In light of the superior reasoning capabilities, can Gemini challenge GPT-4V's leading position in multi-modal learning? In this paper, we present a preliminary exploration of Gemini Pro's visual understanding proficiency, which comprehensively covers four domains: fundamental perception, advanced cognition, challenging vision tasks, and various expert capacities. We compare Gemini Pro with the state-of-the-art GPT-4V to evaluate its upper limits, along with the latest open-sourced MLLM, Sphinx, which reveals the gap between manual efforts and black-box systems. The qualitative samples indicate that, while GPT-4V and Gemini showcase different answering styles and preferences, they can exhibit comparable visual reasoning capabilities, and Sphinx still trails behind them concerning domain generalizability. Specifically, GPT-4V tends to elaborate detailed explanations and intermediate steps, and Gemini prefers to output a direct and concise answer. The quantitative evaluation on the popular MME benchmark also demonstrates the potential of Gemini to be a strong challenger to GPT-4V. Our early investigation of Gemini also observes some common issues of MLLMs, indicating that there still remains a considerable distance towards artificial general intelligence. Our project for tracking the progress of MLLM is released at https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models.Comment: Total 120 pages. See our project at https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Model

    Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture

    Get PDF
    Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles

    STRUCTURAL SHAPE OPTIMIZATION BY ISOGEOMETRIC BOUNDARY ELEMENT METHOD

    No full text
    In Isogeometric boundary element method(IGA-BEM), Non-Uniform Rational B-Splines(NURBS) which are used for describing the geometric boundary in a computer-aided geometric design(CAGD) are employed as shape functions of Boundary Element Method. IGA-BEM not only can accurately describe the geometric boundary, but also unify the design model, analysis model and optimization model, so it can avoid the repeated meshing and mesh distortion problems in the optimization process and it also can improve the efficiency of the design, calculation and optimization. In this article IGA-BEM is combined with particle swarm optimization(PSO) to study the shape optimization of two-dimensional linear elastic structure. Compared with the gradient-based optimization algorithms, gradient-free PSO algorithm can avoid the complicated sensitivity analysis process and make the optimization process easier. The efficiency and accuracy of the combined isogeometric boundary element method-PSO are demonstrated through two shape optimization examples

    Study on High-Temperature Glass Lens Molding Process Using FEM Simulation

    No full text

    Title: Fabrication of small aspheric moulds using single point inclined axis grinding Fabrication of small aspheric moulds using single point inclined axis grinding Fabrication of small aspheric moulds using single point inclined axis grinding

    No full text
    Abstract Single point inclined axis grinding techniques, including the wheel setting, wheel-workpiece interference, error source determination and compensation approaches, were studied to fabricate small aspheric moulds of high profile accuracy. The interference of a cylindrical grinding wheel with the workpiece was analysed and the criteria for selection of wheel geometry for avoiding the interference was proposed. The grinding process was performed with compensation focused on two major error sources, wheel setting error and wheel wear. The grinding results showed that the compensation approach was efficient and the developed grinding process was capable to generate small aspheric concave surfaces on tungsten carbide material with a profile error of smaller than 200 nm in PV value after two to three compensation cycles
    corecore