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Abstract: Viscoelastic properties of glass within molding temperatures, such as shear relaxation
modulus and bulk relaxation modulus, are key factors to build successful numerical model,
predict forming process, and determine optimal process parameters for precision glass molding.
However, traditional uniaxial compression creep tests with large strains are very limited in
obtaining high-accuracy viscoelastic data of glass, due to the declining compressive stress caused
by the increasing cross-sectional area of specimen in testing process. Besides, existing calculation
method has limitation in transforming creep data to viscoelasticity data, especially when Poisson’s
ratio is unknown at molding temperature, which further induces a block to characterize viscoelastic
parameter. This study proposes a systematic acquisition method for high-precision viscoelastic
data, including creep testing, viscoelasticity calculation, and finite element verification. A
minimal uniaxial creep testing (MUCT) method based on thermo-mechanical analysis (TMA)
instrument is first built to obtain ideal and accurate creep data, by keeping compressive stress as
a constant. A new calculation method on viscoelasticity determination is then proposed to derive
shear relaxation modulus without the need of knowing bulk modulus or Poisson’s ratio, which,
compared with traditional method, extends the application range of viscoelasticity calculation.
After determination, the obtained viscoelastic data are further incorporated into a numerical
simulation model of MUCT to verify the accuracy of the determined viscoelasticity. Base on
the great consistence between simulated and measured results (uniaxial creep displacement),
the proposed systematic acquisition method can be used as a high accuracy viscoelasticity
determination method.
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1. Introduction

Precision Glass Molding (PGM), as shown in Fig. 1, is a replicative process for mass-producing
lenses of various shapes in a large volume for high end precision optical applications [1–3]. Glass
molding process strongly depends on the mechanical and thermal properties of glass material,
among which the viscoelasticity is most important for achieving a precise shape transfer from
the mold [4,5]. Recently numerical method has become an efficient method to investigate glass
molding process if accurate viscoelasticity data of glass is available [5,6]. Therefore, an accurate
measurement method for viscoelastic properties of glass at certain temperature is critically
needed.

For viscoelasticity measurement of glasses and other viscoelastic materials, the testing method
can be mainly divided into two categories: dynamic method and static method [7,8]. In dynamic
method, typically referred as dynamic thermo-mechanical analysis (DMA) [9], a sinusoidal
stress is applied and the strain in the material is measured through DMA equipment, allowing
one to determine the viscoelastic behavior of material. Static method can be further divided
into two methods: creep test and stress relaxation test [10–13]. In creep test, after applying a
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Fig. 1. Illustration of precision glass lens molding and viscoelasticity.

constant stress on glass at a certain temperature, the creep compliance will increase with time,
and the modulus relaxation function can be converted from the creep compliance [14]. In stress
relaxation test, an initial deformation is instantaneously applied to the sample and then kept at
the last position, the decreasing stress as a function of time is measured to calculate the modulus
relaxation function [15,16].

Although both dynamic and static methods can measure viscoelasticity of glass material, there
are still some challenges in measuring viscoelasticity accurately, especially at high temperatures.
For dynamic method, the general DMA equipment used to measure the viscoelastic properties is
not suitable to evaluate the glass having a transition temperature over 500°, because the equipment
is generally designed for plastic material, and its upper limit for the measurement temperature is
mostly at 300–400° [17]. For stress relaxation testing method, it’s difficult to impose an ideal
instantaneous deformation to the specimen [16], and subsequently, the ideal testing condition of
the stress relaxation can’t be acquired. Therefore, compared with the methods mentioned above,
creep testing method, especially cylinder compression creep testing [5,18], is more inclined
to be used to measure viscoelastic properties [4,16,17]. However, when cylinder specimen
compresses with a constant load, it will expand in the radial direction, and inconstant stress
will be induced and an estimation error of the creep compliance function will occur. Besides,
existed calculation method has limitation in transforming creep data to viscoelasticity data,
especially when Poisson’s ratio is unknown in molding temperature, which further induce a
block to characterize viscoelastic parameter. Therefore, an ideal testing and easy implemented
calculation method need to be developed to have high accuracy viscoelastic data of glass material,
with more convenience.

2. Basic theory of viscoelasticity

In high precision glass molding process, glass flow in the mold under pressure is not purely
elastic or viscous deformation, and its response to die pressure has the combination of viscosity
and elasticity properties, called viscoelastic behavior [19–21]. The viscoelastic stress-strain
equation not only depends on the current stress and strain state, but also depends on the entire
development history of these states. This constitutive behavior could be expressed by hereditary
or Duhamel integrals which are formed by taking the stress or strain accumulation with time into
account [22].

For an isotropic viscoelastic material, the deviatoric and volumetric behaviors are considered
fully decoupled [22], as shown in Fig. 2, and the constitutive relation of relaxation form are given
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by [16,22]

σij(t) = eij(0) · 2G(t) +
t∫
0

eij(t′) d2G(t−t′)
d(t−t′) dt′

+δij · eii(0) · 3K(t) + δij ·
t∫
0

eii(t′) d3K(t−t′)
d(t−t′) dt′

= Sij(t) + σii(t), (i, j = 1, 2, 3)

, (1)

where δij is the Kronecker symbol, Sij and σii are deviatoric and volumetric stresses, respectively,
eij and εii are deviatoric and volumetric strains, respectively, and G(t), K(t) are deviatoric and
volumetric relaxation moduli which represent the response to a unit applied strain and have
characteristic relaxation time. The relaxation moduli for materials with a fading memory can be
expressed in terms of Prony or exponential series [19,22].

G(t) = G∞ +
N1∑
i=1

Giexp(−t/τi), (2)

K(t) = K∞ +
N2∑
j=1

Kjexp(−t/λj), (3)

In the equations above, G∞ and K∞ are the long term shear and bulk modulus, τi and λi are the
corresponding relaxation time for the deviatoric and volumetric relaxation moduli. The short
term moduli which describe the instantaneous elastic response given by [19,22,23]

G0 = G∞ +
N∑

n=1
Gn, (4)

K0 = K∞ +
N∑

n=1
Kn, (5)

Fig. 2. Illustration of material deformation including deviatoric and volumetric behavior.

3. Minimal uniaxial creep testing (MUCT) method

In creep test, after applying a constant stress on glass at a certain temperature, the strain will
increase with time. However, as seen in Fig. 3 of a traditional uniaxial creep testing, cross-
sectional area becomes much larger due to uniaxial displacement, which will lead to declining
compressive stress, and the cylinder shape becomes bulging due to contact surface friction
[16,17]. In practice, the larger uniaxial displacement, the larger cross-section and the more
bulging shape becomes.
Inspired by this observation, if we can keep minimal uniaxial shift, the cylinder section

can be considered as unchanged, and then compressive stress can be guaranteed as constant.
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Fig. 3. Traditional uniaxial creep testing processes with friction in interface (a) and without
friction in interface (b).

Furthermore, cylinder shape can be considered as non-bulging, so the friction effect should be
weakened. This will meet our requirement to realize a more idealized creep testing. In order to
keep minimal shift during uniaxial creep testing, a creep test scheme based on thermo-mechanical
analysis (TMA) instrument is designed. For TMA equipment, it is based on the measurement of
specimen length change under negligible load at scanned temperature [24,25], and every change
of length in the sample is communicated to a highly sensitive inductive displacement transducer
(LVDT) via a push rod and transformed into a digital signal. It is usually used to determine
the physical or chemical properties of the specimen as it is heated, cooled or held at constant
temperature [26]. For example, the thermal expansion and transition temperature properties of
glass material can be measured [26–28]. With the improvement of sensor technology [29], the
TMA instrument can achieve the resolution up to 0.5 nanometer. Besides, the force generator of
TMA works electromagnetically, and, after an electric current is applied in the magnetic field,
the force can be generated instantaneously. This means TMA can achieve more idealized step
loading than traditional pressing equipment (produce force by motor), with very short ramp up
time, further improving the measurement accuracy.

The detailed uniaxial creep testing scheme of this study is illustrated in Fig. 4, where the glass
specimen is sandwiched between two-cylinder plate sapphire molds with 12.5mm in diameter
and 0.55mm in thickness to prevent the adhesion between the glass and the quartz carrier of
the test equipment. The borosilicate glass 3.3 specimen is machined to a cylinder shape with
2.5mm in height and 8mm in diameter. Both surfaces of glass specimen and sapphire plate are
polished to further minimize the friction effects, qualities of polished surfaces are measured by
Zygo white-light interferometer system, and roughness values of these surfaces are illustrated in
Fig. 5. Table 1 summarizes material properties of borosilicate glass 3.3, quartz and sapphire.

Since the shift is controlled within several thousandths of total displacement in this creep test,
usually just several microns, and nanometer resolution can be achieved, this method could be
called minimal uniaxial creep testing (MUCT) method for measuring viscoelasticity properties.
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Fig. 4. The TMA equipment (a), detailed testing view (b), the TMA scheme (c), and force
actuator (d).
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Fig. 5. Surface finish of glass specimen (a) and sapphire plate (b).

Table 1. Material properties of borosilicate glass 3.3, quartz and sapphire

Physical Characteristics Borosilicate Glass Quartz Sapphire

Thermal expansion a (20°C; 300°C), K−1 3.3×10−6 5.5×10−7 8.4×10−6

Transformation temperature Tg °C 525 1200 —

Softening point °C 825 1730 —

Density at 25°C, g·cm−3 2.2 2.7 3.98

Young’s modulus E at 25°C, KN·mm−2 64 76.5 350

Poisson’s ratio µ at 25°C 0.2 0.17 0.29

Thermal conductivity w at 90°, C W·m−1 ·K−1 1.2 1.4 6.05

4. Determination of modulus relaxation function

4.1. Proposing a new calculation method on viscoelasticity determination

For linear viscoelastic material under uniaxial (x-direction) compressive stress condition, the
constitutive equation for deviatoric stress component S11(t) in this direction can be expressed by
[30]

S11(t) = 2G(t) · e11(0) +
t∫
0
2G(t − t′) · de11(t′)

d(t′) dt′

= 2G(t) · [εx(0) − εm(0)] +
t∫
0
2G(t − t′) d[εx(t′)−εm(t′)]

d(t′) dt′
, (6)

where εx(t) is total strain in x-direction, G(t) and e11(t) are shear relaxation modulus and principal
deviatoric strain of x-direction respectively. Accordingly, volumetric stressσm(t) can be expressed
by

σm(t) = 3K(t) · εm(0) +
t∫

0

3K(t − t′)
dεm(t′)
d(t′)

dt′, (7)

where K(t) and εm(t) are bulk relaxation modulus and volumetric strain respectively.
The uniaxial response weakly depends on the volumetric relaxation [30], because the volumetric

modulus only changes slightly and could be treated as a constant without relaxation behavior
[16,17,30], while shear relaxation modulus could decrease to almost zero instantly [30,31].
Therefore, compared with total uniaxial strain εx(t), volumetric strain εm(t) could be neglected.
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Equation (6) could be transformed to

S11(t) = 2G(t) · εx(0) +
t∫

0

2G(t − t′)
dεx(t′)
d(t′)

dt′. (8)

In uniaxial compression creep experiment, the stress component of uniaxial direction includes
both deviatoric stress and dilatational stress as

σx(t) = S11(t) + σm(t). (9)

According to the first principal invariant of deviatoric stress tensor [32], dilatational stress σm(t)
is one third of the first invariant I1(t), and can be expressed by

σm(t) =
1
3

I1(t) =
1
3
[σ1(t) + σ2(t) + σ3(t)]. (10)

In uniaxial compression creep experiment, σy(t) = σz(t) = 0, therefore

σm(t) =
1
3
σx(t). (11)

According to Eqs. (9) and (11), there is

S11(t) = σx(t) − σm(t) =
2
3
σx(t). (12)

Combining Eqs. (8) and (12), there will be

S11(t) =
2
3
σx(t) = 2G(t) · εx(0) +

t∫
0

2G(t − t′)
dεx(t′)
d(t′)

dt′. (13)

According to the linear viscoelastic theory [30], uniaxial strain εx(t) can be expressed by the
following convolution integral equation:

εx(t) = Jx(t) · σx(0) +
t∫

0

Jx(t − t′)
dσx(t′)
d(t′)

dt′. (14)

Applying Laplace transform to Eqs. (13) and (14), then

S̄11(s) =
2
3
σ̄x(s) = 2sḠ(s)ε̄x(s), (15)

ε̄x(s) = sJ̄x(s)σ̄x(s). (16)
Then, the relationship between shear relaxation modulus function Ḡ(s) and uniaxial creep
compliance function J̄x(s) can be simplified as follows:

2Ḡ(s) =
2
3
·

1
s2J̄x(s)

. (17)

This indicates that shear relaxation modulus Ḡ(s) can be derived from uniaxial creep compliance
J̄x(s) directly, whereby G(t) can be obtained by using inverse Laplace transform. Compared with
2Ḡ(s) = 2 · 3 ·K(s)E(s)[9K(s) − E(s)] - 1 [16,17,33], a widely used shear relaxation determination
equation, the proposing calculation method shown in Eq. (17) can be used to derive shear
relaxation modulus without knowing information about bulk modulus and Poisson’s ratio, which
is due to shear relaxation dominating in uniaxial creep deformation [30]. Therefore, the proposing
shear calculation method extends the application range, especially when Poisson’s ratio and bulk
modulus are unknown at a certain temperature.
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4.2. Measurement of the creep function curve in MUCT process

In MUCT process, glass specimen is heated up to 650°C above Tg, and is soaked for a sufficiently
long time in order to reach homogeneous temperature distribution. After heating, with temperature
keeping at 650°C, an instantaneous step load of 0.5 N is applied to the specimen, and test duration
is maintained for a sufficient period of time in order to have sufficient data points in displacement
curve.

For a linear viscoelastic material, if it is subjected to a constant uniaxial stress σ0 at time t0, its
strain εx(t) rises instantaneously to the elastic value εE = σ0/E0, then gradually to a maximum
value of delayed elastic strain εD, and finally to an irreversible linear strain caused by viscous
flow, as shown in Fig. 6(a) [30].

Fig. 6. Ideal uniaxial creep strain curve for viscoelastic material (a) and uniaxial creep
strain curve and creep compliance curve obtained by MUCT method (b).

Fig. 7. IET testing for Young’s modulus(a) and the shear modulus (b).

After testing, uniaxial creep strain curve and corresponding creep compliance curve are
obtained and plotted in Fig. 6(b), where the creep compliance curve is directly calculated by
Jx(t) = εx(t) · σ−1x . It has been clearly shown that the uniaxial creep strain curve measured by
MUCT in Fig. 6(b) has the same trend with the ideal one in Fig. 6(a).

4.3. Calculation of shear relaxation modulus function

Uniaxial creep compliance testing data could be fitted by a generalized Voigt model Jx(t) in Prony
series as the following equation:

Jx(t) =
1
E0
+

n∑
i=1

1
Ei
(1 − e−t/τ∗i ). (18)
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Where E is the Young’s modulus that is temperature-dependent, and Ei and τi are the elastic
modulus relaxation time of each Kelvin component, respectively. The uniaxial creep compliance
curves of input (testing) and output (fitting) are shown in Fig. 8(a).

Fig. 8. Uniaxial creep compliance curve of input (testing) and output (fitting) (a), calculated
shear stress relaxation modulus function curve in normal time scale (b) and in log time scale
(c).

By applying Laplace transform to Eq. (18), we have the Laplace-transformed creep function
J̄x(s):

J̄x(s) =
1

sE0
+

n∑
i=1

1
sEi(1 + sτ∗i )

. (19)

As described previously, the shear relaxation modulus Ḡ(s) in the Laplace transformed domain
can be calculated by Eq. (17). Substituting Eq. (19) into Eq. (17), the Laplace transformed shear
relaxation modulus can be derived as:

2Ḡ(s) =
2
3
·

1
s2J̄x(s)

=
2
3
·

1[
s

E0
+

n∑
i=1

s
Ei(1 + sτ∗i )

] . (20)

A generalized Maxwell model with six Prony series is employed to express shear relaxation
modulus G(t), since model with six Prony series (or more than six) can sufficiently describe
the relaxation modulus spectrum of glass viscoelasticity at certain temperature [30,34]. In this
model, the shear relaxation modulus G(t) [23] is expressed below:

G(t) = G∞ +
6∑

i=1
Giexp(−t/τi), (21)

where τi = ηi/Gi is shear stress relaxation time, Gi and G∞ denote, respectively, shear modulus
component and long-term shear modulus. By using the relationship mentioned in Eq. (20) and
the inverse Laplace transform, shear relaxation modulus G(t) with six Prony series is specified,
and the specific coefficients are listed in Table 2.
In real uniaxial creep deformation testing, the elastic strain εE = σ0/E as shown in Fig. 6(a)

includes not only elastic strain of specimen but also elastic strain from support and pressing
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Table 2. Coefficient of shear relaxation modulus in 650°

Shear modulus Gi (MPa) Prony factor gi

G1 G2 G3 g1 g2 g3
788.299 789.291 789.788 3.325×10−1 3.330×10−1 3.332×10−1

G4 G5 G6 g4 g5 g6
0.011 0.811 1.709 4.638×10−6 3.420×10−4 7.208×10−4

Stress relaxation times τi (s) Short term and Long-term shear modulus (MPa)

τ1 τ2 τ3 Short term shear modulus G0

2.110×10−1 2.121×10−1 2.292×10−1 2370.580

τ4 τ5 τ6 Long term shear modulus G∞
1.687×102 2.087×102 4.628×103 0.667

mold, which makes all elastic strains mixed up together, and this unreal elastic strain is neglected
by TMA data processing software at test beginning. On this account, the calculated short-term
modulus by uniaxial creep testing method is not equal to the real short-term modulus. Finally, as
shown in Table 2, the calculated short-term shear modulus at 650 °C is 2.37 GPa.
In order to know the real value of short modulus of borosilicate glass 3.3 at 650 °C, impulse

excitation technique (IET) can be used to implement the direct measurement. Figure 7 shows two
typical testing modes (flexural mode and torsional mode) and how to support the specimen in
each mode to minimize the frictional effects at supports. During testing, the sample (70 mm ×
25 mm × 6 mm) is tapped by an impact bar, and a sensor records the induced vibration signals.
The acquired vibration signal in the time domain is then converted to the frequency domain by a
fast Fourier transformation. One can then determine the resonant frequency with high accuracy
to calculate the elastic properties based on classical beam theory. Finally, the short-term shear
modulus value tested by IET is 25.7 GPa, which is different from the calculated value of 2.37 GPa.
Given this difference, the influence of short-term modulus’ on glass rheology can be performed
by analyzing the shear relaxation modulus function properties. More detail about IET equipment
and testing process can be seen in Appendix A.
The calculated shear relaxation modulus function curves varying with time are plotted in

Figs. 8(b) and 8(c). It can be observed that the shear modulus decays within seconds to a small
value close to 1 MPa, in other words, at this temperature, the glass deformation should be almost
independent on the short-term shear modulus and dominantly rely on the shear modulus with
small value (after relaxation). Therefore, according to the shear relaxation modulus properties, it
doesn’t matter whether the short-term shear modulus is 2.37 GPa or 25.7 GPa for predicting the
rheological behavior of glass on a larger time-scale at this temperature.

5. Validation of shear relaxation modulus function

5.1. Finite element model building for glass cylinder compression

A simulation model is built in FEM software MSC. Marc to verify the calculated shear relaxation
modulus function by comparing measured and simulated creep testing data. Since the glass
specimen and sapphire plate are in cylindrical shape, and both the thermal and mechanical
loading conditions are axisymmetric, a simplified axisymmetric model is adopted, as illustrated
in Fig. 9. An actual creep experiment involves the four stages: heating, soaking, pressing, and
cooling. However, the testing data are only obtained at the pressing stage of a certain temperature,
therefore other stages do not affect the results.

In the simulation model, the bottom sapphire plate is fixed, the constant load force and thermal
conditions, which are same as actual situation, are applied. Shear relaxation modulus data and
other material parameters are added to finite elements.
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Fig. 9. Axisymmetric FEM model (a) and thermo-mechanical loading process (b).

5.2. Validation of the determined viscoelasticity

In ideal situation, if axial creep displacement can be achieved from test without compression
stress change and interface friction, the calculated relaxation modulus will be much accurate.
In the MUCT process, the section of the sample could be considered a constant, which means
a constant compression stress could be guaranteed, and thus the interface friction will be the
only remaining factor affecting the creep displacement result. In our previous study of frictional
dependence and predictive accuracy of viscoelastic model [31], when the interface friction can’t
be slashed in real testing, the uniaxial creep displacement curve of simulation, reproduced by the
frictional disturbed viscoelasticity, has a large deviation with the testing curve.

Since glass and sapphire surfaces are polished, the interface friction force should be very small
or zero. Thus, in simulation, the interface friction coefficient is chosen as 0. If the simulated
and experimental results are consistent, the determined viscoelasticity should be accurate. If
not, friction might exist in the contact interface between mold and specimen in the deformation
process, and friction compensation should be further studied.
With zero as the input of the interface friction coefficient, the simulated displacement cloud

diagrams at the end of time are illustrated in Fig. 10. It is found that the axial displacements of
all the points on one certain horizontal layer (i.e., Layer a) have the same value. Correspondingly,
the rational displacements of all the points on one certain vertical layer (i.e., Layer b) are identical.
Figure 11(a) shows the real-time creep displacements of the layers of a, b, c, and d. Overall,
all the creep displacements of these layers are consistent in trend. The outer layer (i.e., Layer
a and d) is two times higher than the corresponding middle one (i.e., Layer b and c) in creep
displacement over the whole process. These means, without interface friction, each layer has a
uniform deformation and the deformation is linearly proportional to the layer location. And in
such situation (without friction), the uniaxial creep deformation should be ideal.

Fig. 10. Uniaxial displacement diagram (a), radial displacement diagram (b) of simulation.
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Fig. 11. Uniaxial displacement curve (a), radial displacement curve (b) of simulation.

To compare the accuracies of the simulation result with the testing one, the uniaxial creep
displacement (layer a) of the simulation is plotted in Fig. 11(b), with the experimental result
as comparison. As shown in Fig. 11(b), it is found that the uniaxial displacement curve of
simulation is in great agreement with testing curve, with minor deviations. More specifically, the
displacement curve of the simulation is just slightly lower than testing one in the whole process.
The reason of the subtle deviations could be that the uniaxial deformation contributed by bulk
modulus relaxation is neglected [18,31], in the viscoelasticity calculation process of section
4. That is, the minor deviations signify that the rheological deformation of the uniaxial creep
testing should be dominantly contributed by shear modulus relaxation. Considering the high
performance of consistency, MUCT method could be used as an ideal uniaxial creep testing
method for glass viscoelasticity determination.

6. Conclusion

This study proposes a new testing and calculation method for determination glass viscoelasticity,
and the conclusions of this study can be drawn as follows:

Firstly, a minimal uniaxial creep testing (MUCT) method based on TMA is proposed. Different
from the traditional creep testing method, only a few microns of creep displacement occur during
the process of MUCT, so the cross-section can be considered as unchanged, and the compressive
stress can be considered as constant, which guarantees an ideal creep testing curve. Secondly, by
analyzing shear relaxation modulus and bulk relaxation modulus behavior on the deformation
process, a direct conversion method from uniaxial creep compliance to shear relaxation modulus
is proposed. Compared with existed (traditional) shear relaxation determination equation, the
proposing calculation method can be used to derive shear relaxation modulus without knowing
information about bulk modulus and Poisson’s ratio. Accordingly, this method extends the
application range, especially when Poisson’s ratio or bulk modulus are unknown at a certain
temperature. Thirdly, according to the function curve property of the calculated shear relaxation
modulus, it can be observed that the shear modulus drops significantly within seconds to a minor
amount (close to 1 MPa). In other words, at this temperature, the glass deformation should be
almost independent on short-term shear modulus and dominantly relied on the relaxed shear
modulus after a sharp decrease. In the end, the accuracy of the determined viscoelasticity is
verified by finite element simulation. According to the analysis result, the simulation curve
and experimental curve coincide greatly, thus MUCT method could be used as a high accuracy
viscoelasticity testing approach.
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Appendix A

A.1 The process of measurement of instantaneous elastic properties by IET in high
temperature

The borosilicate glass specimen is suspended in platinum-rhodium (PtRh)-wires that are fixed to
parallel Al2O3 support units, since PtRh and Al2O3 have good high-temperature and oxidation
resistance. The support unit with the glass specimen is then moved in the furnace, while the
non-contact transducer is placed above an anti-node point of the test specimen to pick up the
desired vibration, but not so close as to affect the free vibration.

Then the specimen is stroked lightly and elastically by an impact bar, either at the center of the
specimen for flexural mode or at the quadrant for torsion mode correspondingly, as shown in
Fig. 12(a). Meanwhile, the sample’s temperature is raised from 25 °C to 650 °C at a heating rate
of 2 °C/min. The vibration signal is constantly recorded by the microphone and transformed to
the signal system for analysis.

Fig. 12. Fix mode (a) and typical high temperature IET device (b).

Young’s modulus value can be determined using the resonant frequency in the flexural mode
of vibration. For a rectangular specimen in flexure mode, the dynamic Young’s modulus can be
calculated from Eq. (23) [35]:

E = 0.9465

(
mf 2f
W

) (
L3

H3

)
δ. (23)

where m, W, L and H are the mass, width, length, and thickness of the specimen respectively,
and ff is the fundamental frequency of vibration in flexure mode. δ factor for the fundamental
flexural mode to account for the length-to-thickness ratio of the specimen, Poisson’s ratio, and so
forth. In the present work, the value δ is calculated by an expression used for the rectangular
geometry bar [35,36],

δ = 1 + 6.585[1 + 0.0752µ + 0.8109µ2]
(H

L
)2
− 0.868

(H
L
)4

−
8.340(1+0.2023µ+2.173µ2)(H/L)4

1+6.338(1+0.1408µ+1.536µ2)(H/L)2
. (24)

where µ is Poisson’s ratio.
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Shear modulus can be determined by the torsional resonant frequency, the mass and dimensions
of a rectangular bar according to the ASTM standards in Eq. (25) [35]:

G =
4Lmf 2t
WH

R, (25)

where ft, m, L and H are the fundamental torsional resonant frequency, mass, width, length and
thickness of the specimen, respectively. R is the correction factor for fundamental torsional mode,
its value can be calculated by Eq. (26) [35]

R =
[(
1 + (W/H)2

)/ (
4 − 2.521 H

W

(
1 − 1.991

/
eπ W

H + 1
))] [

1 + 0.00851n2W2

L2

]
−0.060

(W
L
) 3
2
(W

H − 1
)2 , (26)

When calculating Young’s modulus and shear modulus, Poisson’s ratio µ in relevant solution
equations is usually not known at first, so these equations cannot be used directly. Especially,
according to ASTM Standards [35], if L/H < 20 and Poisson’s ratio is unknown, an initial
Poisson’s ratio µ0 can be assumed to begin the calculation. Then through an iterative process as
shown in Fig. 13, the final estimated Poisson’s ratio, Young’s modulus, and shear modulus can
be obtained. In addition, the bulk modulus can be obtained by K = GE/(3(3G − E)).

Fig. 13. Process Flow Chart for Iterative Determination of Elastic Properties
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