24 research outputs found

    State-of-the-Art Review of Vortex-Induced Motions of Floating Offshore Wind Turbine Structures

    Get PDF
    The motivation for this study is the fast development of floating offshore wind energy and the immature methodology and engineering practice related to predictions of vortex-induced motions (VIM). Benefiting from the oil and gas industry, in the past several decades, extensive knowledge and experience on vortex-induced vibrations (VIV) on slender marine structures has been gained. As the learnings from these efforts should be transferred and adapted to the renewable energy industry, a state-of-the-art review on influential VIM research has been carried out in this paper, focusing on: (1) engineering practice, (2) model tests, (3) numerical calculation, and (4) field measurement. Engineering gaps and potential research topics are identified as future work.publishedVersio

    Experimental and Numerical Analysis of Combined In-line and Cross-flow Vortex Induced Vibration

    No full text
    This thesis presents results from experimental and numerical investigations of the hydrodynamic forces on a rigid cylinder moving with prescribed orbits in uniform flow. The hydrodynamic forces are measured in both in-line (IL) and cross- ow (CF) directions. The measurements are processed to nd excitation and added mass coeffcients at discrete frequencies. The numerical simulations are used to illustrate the vortex shedding modes and are compared with the experimental results. The hydrodynamic coeffcients obtained from the harmonic forced motion experiments of a rigid cylinder do not always represent forces on a cross section of a exible beam. The orbits used in the forced motion experiments are therefore extracted from the measured motions of cross sections of a exible pipe under uniform and shear flows. Both periodic and observed orbits within a time window are applied as prescribed motions. Higher order displacement components are present in such orbits. IL response amplitudes from combined IL and CF response are larger than pure IL response amplitudes. The hydrodynamic coefficients obtained from the periodic experiments are often larger than those obtained from the pure IL tests. Higher order displacement components are more common in the IL direction than in the CF direction, and higher order IL displacement components will cause larger hydrodynamic forces in both directions. The hydrodynamic coefficients obtained from periodic motion tests are adequate for representing quasi-periodic observed motions. For chaotic observed motions, periodic orbits will yield hydrodynamic coefficients with larger uncertainties. Results from numerical analyses using large eddy simulation (LES) indicate that this method can be used to identify vortex shedding patterns and predict hydrodynamic forces under certain Re numbers and orbits.

    Improved In-Line VIV Prediction for Combined In-Line and Cross-Flow VIV Responses

    Get PDF
    Slender marine structures are subjected to ocean currents, which can cause vortex-induced vibrations (VIV). Accumulated damage due to VIV can shorten the fatigue life of marine structures, so it needs to be considered in the design and operation phase. VIV prediction tools are based on hydrodynamic coefficients, which are obtained from forced motion experiments on a circular cylinder. Most of the forced motion experiments apply harmonic motions in either in-line (IL) or cross-flow (CF) direction. Combined IL and CF forced motion experiments are also reported. However, measured motions from flexible pipe VIV tests contain higher order harmonic components, which have not yet been extensively studied. This paper presents results from conventional forced motion VIV experiments, but using measured motions taken from a flexible pipe undergoing VIV. The IL excitation coefficients were used by semi-empirical VIV prediction software VIVANA to perform combined IL and CF VIV calculation. The key IL results are compared with NDP flexible pipe model test results. By using present IL excitation coefficients, the prediction of IL responses for combined IL and CF VIV responses is improved.acceptedVersio

    Improved in-line VIV Prediction for combined in-line and Cross-Flow VIV Responses

    Get PDF
    Slender marine structures are subjected to ocean currents, which can cause vortex-induced vibrations (VIV). Accumulated damage due to VIV can shorten the fatigue life of marine structures, so it needs to be considered in the design and operation phase. VIV prediction tools are based on hydrodynamic coefficients, which are obtained from forced motion experiments on a circular cylinder. Most of the forced motion experiments apply harmonic motions in either in-line (IL) or cross-flow (CF) direction. Combined IL and CF forced motion experiments are also reported. However, measured motions from flexible pipe VIV tests contain higher order harmonic components, which have not yet been extensively studied. This paper presents results from conventional forced motion VIV experiments, but using measured motions taken from a flexible pipe undergoing VIV. The IL excitation coefficients were used by semi-empirical VIV prediction software VIVANA to perform combined IL and CF VIV calculation. The key IL results are compared with NDP flexible pipe model test results. By using present IL excitation coefficients, the prediction of IL responses for combined IL and CF VIV responses is improved CF responses. Forced motion tests with two dimensional harmonic motions have been carried out by [13]. Realistic orbits measured from a flexible beam VIV model tests were applied in forced motion VIV model tests [9]. This experimental method was first applied by [4], and further used by [9] and [10]. Both non-periodic time history of the motions and representative periodic motions were used in the experiments, see Figure 2. The hydrodynamic coefficients from the periodic motion tests were calculated and presented in [6]. The sensitivity of the hydrodynamic force and vortex shedding modes on the different realistic orbits were investigated in [7]. It was found that harmonic orbits had larger uncertainties to predict VIV than realistic orbits, and that IL motions can result in large higher order force components. Results from non-periodic and periodic forced motion VIV tests were compared in [8]. Depending on the response types, for quasi-periodic VIV responses, periodic orbits are representative for non-periodic time histories; while when the responses are partly or fully chaotic, the hydrodynamic coefficients calculated from tests with selected periodic orbits have larger uncertainty or fail to represent the entire time history.acceptedVersio

    Prototype Reynolds Number VIV Tests on a Full-scale Rigid Riser

    Get PDF
    Slender offshore structures in deep water subjected to currents may experience vortex-induced vibrations (VIV), which can cause significant fatigue damage. Extensive experimental researches have been conducted to study the VIV in the past several decades. However, most of the experimental works have small-scale models and relatively low Reynolds number (Re)—“subcritical” or even lower Reynolds number regime. There is a lack of full understanding of the VIV in prototype Re flow regime. Applying the results with low Re to a full-scale riser with prototype Re might have uncertainties due to the scaling effects. In addition, the surface roughness of the riser is also an important parameter, especially in critical Re regime, which is the case for prototype risers. In the present study, two full-scale rigid riser models with different surface roughness ratios were tested in the towing tank of MARINTEK in 2014. Stationary tests, pure crossflow (CF) free oscillation tests, and forced/controlled motion tests were carried out. Several conclusions could be made: The drag coefficient is dependent on the Re number and surface roughness ratio. At critical and supercritical flow regimes, the displacement amplitude ratio is less sensitive to Re than that at lower Re. The displacement amplitude ratio in subcritical flow regime is significantly larger than that in critical and supercritical flow regimes. Two excitation regions for the ‘smooth riser’ and one excitation region for the “rough riser” are identified.acceptedVersio

    Drilling Riser Model Test for Software Verification

    Get PDF
    Marine drilling riser is subject to complicated environmental loads which include top motions due to Mobile Offshore Drilling Unit (MODU), wave loads and current loads. Cyclic dynamic loads will cause severe fatigue accumulation along the drilling riser system, especially at the subsea wellhead (WH). Statoil and BP have carried out a comprehensive model test program on drilling riser in MARINTEK’s Towing Tank in February 2015. The objective is to validate and verify software predictions of drilling riser behaviour under various environmental conditions by use of model test data. Six drilling riser configurations were tested, including different components such as Upper Flex Joint (UFJ), tensioner, marine riser, Lower Marine Riser Package (LMRP), Blow-Out Preventer (BOP), Lower Flex Joint (LFJ), buoyancy elements and seabed boundary model. The drilling riser models were tested in different load conditions. Measurements were made of micro bending strains and accelerations along the riser in both In-Line (IL) and Cross-Flow (CF) directions. Video recordings were made both above and under water. In this paper, the test set-up and test program are presented. Comparisons of results between model test and RIFLEX simulation are presented on selected cases. Preliminary results show that the drilling riser model tests are able to capture the typical dynamic responses observed from field measurement, and the comparison between model test and RIFLEX simulation is promising.acceptedVersio

    Prototype Reynolds Number VIV Tests on a Full-Scale Rigid Riser

    Get PDF
    Slender offshore structures in deep water subjected to currents may experience vortex-induced vibrations (VIV), which can cause significant fatigue damage. Extensive experimental researches have been conducted to study the VIV in the past several decades. However, most of the experimental works have small-scale models and relatively low Reynolds number (Re) - ‘subcritical’ or even lower Reynolds number regime. There is a lack of full understanding the VIV in prototype Re flow regime. Applying the results with low Re to a full scale riser with prototype Re might have uncertainties due to the scaling effects. In addition, the surface roughness of the riser is also an important parameter, especially in prototype Re regime. In present study, two full-scale rigid riser models with different surface roughness ratios were tested in the towing tank of MARINTEK in 2014. Stationary tests, pure cross-flow (CF) free oscillation tests and forced/controlled motion tests were carried out. Several conclusions could be made: • The drag coefficient is dependent on the Re number and surface roughness ratio. • At critical and supercritical flow regimes, the displacement amplitude ratio is less sensitive to Re than that at lower Re. The displacement amplitude ratio in subcritical flow regime is significantly larger than that in critical and supercritical flow regimes. • Two excitation regions for the ‘smooth riser’ and one excitation region for the ‘rough riser’ are identifiedacceptedVersio

    Dynamic response of a top-tensioned riser under vessel motion

    Get PDF
    Model tests of a top-tensioned riser model were carried out as a part of a joint industry project, with the purpose of verifying the calculations of the riser analysis program RIFLEX. Sinusoidal motion in one direction was imposed at the top end of the riser model to simulate vessel motion. The tests were carried out in still water. Bending strain and acceleration were measured in both in-line (IL) and cross-flow (CF) directions along the riser model, so that the global response could be obtained through post-processing of the measured signals. Numerical simulations were performed and the results were compared with results from the model tests. This paper discusses interesting aspects of this comparison as well as the general dynamic behaviour of the top tensioned riser. It was found that the dynamic responses of a top tensioned riser with vessel motion can consist of not only the in-line responses due to vessel motion at the riser top end, but also cross-flow vortex-induced vibrations (VIV) under conditions when Keulegan–Carpenter number is relatively small. Cross-flow VIV response is estimated using the VIVANA software and compared to the measured response. The main conclusion is however that the riser analysis program RIFLEX can predict the global dynamic responses sufficiently well.acceptedVersio

    On the Design Considerations of New Offloading Hose Applied on a Turret Moored FPSO

    Get PDF
    Offloading hoses are used to transfer crude oil or liquid petroleum products from a fixed offshore production platform/floating production, storage and offloading (FPSO) unit to shuttle tankers. The hoses are subjected to environmental loads that are mainly waves, current, and vessel motions from both FPSO and the shuttle tanker. New offloading hoses were planned to be applied in a FPSO in harsh environment, and a design analysis was done in this connection. Numerical simulations were performed on ultimate limit state (ULS), serviceability limit state (SLS) and accidental limit state (ALS) by using the software RIFLEX [2]. Critical responses such as curvature and axial forces are checked. The following conditions are checked: 1. Normal operation condition with oil filled hose 2. Connect operation condition, floating gas filled hose 3. Emergency disconnect condition A SIMA [3] workflow was established to calculate accumulated fatigue damage of all the elements of the offloading hose model. For the new offloading hose, it is important to have a combined bending-tension loading capacity check. A utilization factor is proposed that possibly may be generalized. The results show that the specified hose has ample capacity for the considered operating conditions for the shuttle tanker to stay in any position within the 2nd emergency shut down sector (ESD2).acceptedVersio
    corecore