114 research outputs found

    Quantifying Inactive Lithium in Lithium Metal Batteries

    Get PDF
    Inactive lithium (Li) formation is the immediate cause of capacity loss and catastrophic failure of Li metal batteries. However, the chemical component and the atomic level structure of inactive Li have rarely been studied due to the lack of effective diagnosis tools to accurately differentiate and quantify Li+ in solid electrolyte interphase (SEI) components and the electrically isolated unreacted metallic Li0, which together comprise the inactive Li. Here, by introducing a new analytical method, Titration Gas Chromatography (TGC), we can accurately quantify the contribution from metallic Li0 to the total amount of inactive Li. We uncover that the Li0, rather than the electrochemically formed SEI, dominates the inactive Li and capacity loss. Using cryogenic electron microscopies to further study the microstructure and nanostructure of inactive Li, we find that the Li0 is surrounded by insulating SEI, losing the electronic conductive pathway to the bulk electrode. Coupling the measurements of the Li0 global content to observations of its local atomic structure, we reveal the formation mechanism of inactive Li in different types of electrolytes, and identify the true underlying cause of low Coulombic efficiency in Li metal deposition and stripping. We ultimately propose strategies to enable the highly efficient Li deposition and stripping to enable Li metal anode for next generation high energy batteries

    TRPA1 Activation-Induced Myelin Degradation Plays a Key Role in Motor Dysfunction After Intracerebral Hemorrhage

    Get PDF
    Intracerebral hemorrhage (ICH) is a devastating disease that is characterized by high morbidity and high mortality. ICH has an annual incidence of 10–30/100,000 people and accounts for approximately 10%–30% of all types of stroke. ICH mostly occurs at the basal ganglia, which is rich in nerve fibers; thus, hemiplegia is quite common in ICH patients with partial sensory disturbance and ectopic blindness. In the clinic, those symptoms are considered to originate from the white matter injury in the area, but the exact mechanisms are unknown, and currently, no effective drug treatments are available to improve the prognosis. Clarifying the mechanisms will contribute to the development of new treatment methods for patients. The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that plays a role in inflammatory pain sensation and nociception and may be a potential regulator in emotion, cognition and social behavior. Here, we report that TRPA1 is involved in myelin damage and oxidative stress injury in a mouse ICH model. Intervention with the TRPA1 channel may be a new method to improve the motor function of patients in the early stage of ICH

    Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants

    Get PDF
    Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice

    Toxicological effects of tris(1,3-dichloro-2-propyl) phosphate in oyster Crassostrea gigas using proteomic and phosphoproteomic analyses

    No full text
    As a typical organophosphorus pollutant, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been widely detected in aquatic environment. Previous studies showed that protein phosphorylation might be a vital way of TDCIPP to exert multiple toxic effects. However, there is a lack of high-throughput investigations on how TDCIPP affected protein phosphorylation. In this study, the toxicological effects of TDCIPP were explored by proteomic and phosphoproteomic analyses together with traditional means in oysters Crassostrea gigas treated with 0.5, 5 and 50 mu g/L TDCIPP for 28 days. Integration of omic analyses revealed that TDCIPP dysregulated transcription, energy metabolism, and apoptosis and cell proliferation by either directly phosphorylating pivotal proteins or phosphorylating their upstream signaling pathways. The U-shaped response of acetylcholinesterase activities suggested the neurotoxicity of TDCIPP in a hormesis manner. What's more, the increase in caspase-9 activity as well as the expression or phosphorylation alterations in eukaryotic translation initiation factor 4E, cell division control protein 42 and transforming growth factor-beta 1-induced protein indicated the disruption of homeostasis between apoptosis and cell proliferation, which was consistent with the observation of shedding of digestive cells. Overall, combination of proteomic and phosphoproteomic analyses showed the capability of identifying molecular events, which provided new insights into the toxicological mechanisms of TDCIPP

    Impact of Enhanced Wave-Induced Mixing on the Ocean Upper Mixed Layer during Typhoon Nepartak in a Regional Model of the Northwest Pacific Ocean

    No full text
    To investigate the effect of wave-induced mixing on the upper ocean structure, especially under typhoon conditions, an ocean-wave coupled model is used in this study. Two physical processes, wave-induced turbulence mixing and wave transport flux residue, are introduced. We select tropical cyclone (TC) Nepartak in the Northwest Pacific ocean as a TC example. The results show that during the TC period, the wave-induced turbulence mixing effectively increases the cooling area and cooling amplitude of the sea surface temperature (SST). The wave transport flux residue plays a positive role in reproducing the distribution of the SST cooling area. From the intercomparisons among experiments, it is also found that the wave-induced turbulence mixing has an important effect on the formation of mixed layer depth (MLD). The simulated maximum MLD is increased to 54 m and is only 1 m less than the observed value. The wave transport flux residue shows a dominant role in the mixed layer temperature (MLT) changing. The mean error of the MLT is reduced by 0.19 °C compared with the control experiment without wave mixing effects. The study shows that the effect of wave mixing should be included in the upper ocean structure modeling

    Effects of biochar in combination with varied N inputs on grain yield, N uptake, NH3 volatilization, and N2O emission in paddy soil

    Get PDF
    Biochar application can improve crop yield, reduce ammonia (NH3) volatilization and nitrous oxide (N2O) emission from farmland. We here conducted a pot experiment to compare the effects of biochar application on rice yield, nitrogen (N) uptake, NH3 and N2O losses in paddy soil with low, medium, and high N inputs at 160 kg/ha, 200 kg/ha and 240 kg/ha, respectively. The results showed that: (1) Biochar significantly increased the rice grain yield at medium (200 kg/ha) and high (240 kg/ha) N inputs by 56.4 and 70.5%, respectively. The way to increase yield was to increase the rice N uptake, rice panicle number per pot and 1,000 grain weight by 78.5–96.5%, 6–16% and 4.4–6.1%, respectively; (2) Under low (160 kg/ha) N input, adding biochar effectively reduced the NH3 volatilization by 31.6% in rice season. The decreases of pH value and NH4+-N content in surface water, and the increases of the abundance of NH4+-N oxidizing archaea and bacteria (AOA and AOB) communities contributed to the reduction of NH3 volatilization following the biochar application; (3) Under same N input levels, the total N2O emission in rice season decreased by 43.3–73.9% after biochar addition. The decreases of nirK and nirS gene abundances but the increases of nosZ gene abundance are the main mechanisms for biochar application to reduce N2O emissions. Based on the results of the current study, adding biochar at medium (200 kg/ha) N level (N200 + BC) is the best treatment to synchronically reduce NH3 and N2O losses, improve grain yield, and reduce fertilizer application in rice production system
    corecore