252 research outputs found

    A novel anti-mycobacterial function of mitogen-activated protein kinase phosphatase-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis </it>(MTB) is a major cause of morbidity and mortality in the world. To combat against this pathogen, immune cells release cytokines including tumor necrosis factor-Ξ± (TNF-Ξ±), which is pivotal in the development of protective granulomas. Our previous results showed that Bacillus Calmette Guerin (BCG), a mycobacterium used as a model to investigate the immune response against MTB, stimulates the induction of TNF-Ξ± via mitogen-activated protein kinase (MAPK) in human blood monocytes. Since MAPK phosphatase-1 (MKP-1) is known to regulate MAPK activities, we examined whether MKP-1 plays a role in BCG-induced MAPK activation and cytokine expression.</p> <p>Results</p> <p>Primary human blood monocytes were treated with BCG and assayed for MKP-1 expression. Our results demonstrated that following exposure to BCG, there was an increase in the expression of MKP-1. Additionally, the induction of MKP-1 was regulated by p38 MAPK and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Surprisingly, when MKP-1 expression was blocked by its specific siRNA, there was a significant decrease in the levels of phospho-MAPK (p38 MAPK and ERK1/2) and TNF-Ξ± inducible by BCG.</p> <p>Conclusions</p> <p>Since TNF-Ξ± is pivotal in granuloma formation, the results indicated an unexpected positive function of MKP-1 against mycobacterial infection as opposed to its usual phosphatase activity.</p

    PHP66 EVALUATION OF THE FIRST-YEAR OPERATION OF KOREAN POSITIVE LIST SYSTEM FOR PHARMACEUTICAL REIMBURSEMENT

    Get PDF

    Severity of Nonalcoholic Fatty Liver Disease is Associated with Development of Metabolic Syndrome: Results of a 5-Year Cohort Study

    Get PDF
    Aims: Nonalcoholic fatty liver disease (NAFLD) is considered to be a hepatic manifestation of metabolic syndrome (MS). However, a few studies have examined the effect of NAFLD on the development of MS. We evaluated the relationship between the development of MS and clinical severity of NAFLD according to alanine aminotransferase (ALT) levels. Methods: A retrospective cohort study was conducted. Participants who underwent abdominal ultrasonography and blood samplings for health check-ups both in 2005 and 2010 were recruited. NAFLD was diagnosed if a person showed fatty liver on ultrasonography without significant alcohol consumption. Subjects with MS at baseline were excluded. Results: A total of 2,728 subjects met the inclusion criteria. Fatty liver (FL) with normal ALT was found in 369 (13.5%) subjects and FL with elevated ALT in 328 (12.0%). During 5 years of follow up, 582 (21.3%) incident cases of MS developed between 2005 and 2010. The incidence of MS was higher in patients with NAFLD compared to control group (41.2% in FL with elevated ALT, 34.7% in FL with normal ALT and 15.7% in control, p<0.001). Multivariate analysis showed that odds ratio (OR) and 95% confidence interval (CI) for MS increased according to the severity of NAFLD [OR (95% CI), 1.29 (0.97βˆ’1.71) in FL with normal ALT and 1.54 (1.18βˆ’1.33) in FL with elevated ALT, p=0.01]. Conclusions: We have demonstrated that development of MS is significantly increased according to the clinical severity of NAFLD. These findings have implications in the clinical availability of NAFLD as a predictor of MS

    Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis

    Get PDF
    Streptomyces coelicolor A3(2) alditol oxidase (AldO) is a soluble monomeric flavoprotein in which the flavin cofactor is covalently linked to the polypeptide chain. AldO displays high reactivity towards different polyols such as xylitol and sorbitol. These characteristics make AldO industrially relevant, but full biotechnological exploitation of this enzyme is at present restricted by laborious and costly purification steps. To eliminate the need for enzyme purification, this study describes a whole-cell AldO biocatalyst system. To this end, we have directed AldO to the periplasm or cell surface of Escherichia coli. For periplasmic export, AldO was fused to endogenous E. coli signal sequences known to direct their passenger proteins into the SecB, signal recognition particle (SRP), or Twin-arginine translocation (Tat) pathway. In addition, AldO was fused to an ice nucleation protein (INP)-based anchoring motif for surface display. The results show that Tat-exported AldO and INP-surface-displayed AldO are active. The Tat-based system was successfully employed in converting xylitol by whole cells, whereas the use of the INP-based system was most likely restricted by lipopolysaccharide LPS in wild-type cells. It is anticipated that these whole-cell systems will be a valuable tool for further biological and industrial exploitation of AldO and other cofactor-containing enzymes.

    BRIT1/MCPH1 links chromatin remodelling to DNA damage response

    Get PDF
    To detect and repair damaged DNA, DNA damage response proteins need to overcome the barrier of condensed chromatin to gain access to DNA lesions1. ATP-dependent chromatin remodeling is one of the fundamental mechanisms used by cells to relax chromatin in DNA repair2–3. However, the mechanism mediating their recruitment to DNA lesions remains largely unknown. BRIT1 (also known as MCPH1) is an early DNA damage response protein that is mutated in human primary microcephaly4–8. We report here a previously unknown function of BRIT1 as a regulator of ATP-dependent chromatin remodeling complex SWI/SNF in DNA repair. Upon DNA damage, BRIT1 increases its interaction with SWI/SNF through the ATM/ATR-dependent phosphorylation on the BAF170 subunit. This increase of binding affinity provides a means by which SWI/SNF can be specifically recruited to and maintained at DNA lesions. Loss of BRIT1 causes impaired chromatin relaxation owing to reduced association of SWI/SNF with chromatin. This explains the decreased recruitment of repair proteins to DNA lesions and reduced efficiency of repair in BRIT1-deficient cells, resulting in impaired survival from DNA damage. Our findings, therefore, identify BRIT1 as a key molecule that links chromatin remodeling with DNA damage response in the control of DNA repair, and its dysfunction contributes to human disease

    Biologically inspired simulation of livor mortis

    Get PDF
    We present a biologically motivated livor mortis simulation that is capable of modelling the colouration changes in skin caused by blood pooling after death. Our approach consists of a simulation of post mortem blood dynamics and a layered skin shader that is controlled by the haemoglobin and oxygen levels in blood. The object is represented by a layered data structure made of a triangle mesh for the skin and a tetrahedral mesh on which the blood dynamics are simulated. This allows us to simulate the skin discolouration caused by livor mortis, including early patchy appearance, fixation of hypostasis and pressure induced blanching. We demonstrate our approach on two different models and scenarios and compare the results to real world livor mortis photographic examples
    • …
    corecore