
Computers & Chemical Engineering, Accepted for publication, May 2006

1

Using Process Topology in Plant-Wide Control Loop Performance
Assessment

S.Y Yim*, H.G. Ananthakumar*, L. Benabbas*, A. Horch+, R. Drath+ and N.F. Thornhill*x

*Department of Electronic and Electrical Engineering, University College London, Torrington Place, London
WC1E 7JE

+ABB Corporate Research Centre, Ladenburg, Germany

Abstract
This contribution describes how disturbances in a control system can be isolated and diagnosed
automatically based on plant topology. In order to demonstrate this, a prototype software has been
designed and implemented which, when given an electronic process schematic of a plant and results
from a data-driven analysis, allows the user to pose queries about the plant and to find root causes of
plant-wide disturbances. This hybrid system puts together two new technologies: the plant topology
information written in XML according to the Computer Aided Engineering Exchange (CAEX)
schema and the results of a signal analysis tool called Plant-Wide Disturbance Analysis (PDA). The
isolation and diagnosis of the root causes of plant-wide disturbances is enhanced when process
connectivity is considered alongside the results of data-driven analysis.
Keywords: Fault detection and diagnosis, plantwide oscillation; plant topology; process monitoring;
root cause; XML.

1. Introduction
Methods for data-driven, signal-based analysis have
been developed in the past few years for finding root
causes of plant-wide disturbances using measurements
from routine process operations [Ruel and Gerry, 1998;
Xia and Howell, 2003; Thornhill, 2005]. Several authors
have observed, however, that data-driven analysis is
enhanced if a qualitative model of the process is used as
well to capture the fundamental causal relationships of a
process in a non-numerical way [Chiang and Braatz ,
2003; Lee et.al., 2003]. Qualitative process information
is implicitly used in diagnosis when an engineer
considers the results from a data-driven analysis and an
exciting possibility is to automate the use of such
information. An industrial example in Thornhill et.al.,
(2003) discussed the reasoning used by process control
engineers to verify a signal-based diagnosis and to
resolve ambiguities. The qualitative information used in
the analysis was the connectivity between items of plant
equipment displayed in the process schematic and the
locations of indicators and control loops. The challenge
now is to capture that information in electronic form and
to manipulate it to draw conclusions.
Object-oriented representations of processes are
becoming widely available using computer aided
engineering tools such as ComosPT from Innotec, and
Intools or SmartPlant P&ID from Intergraph. The plant
topology as described in process diagrams can now be
exported into an vendor independent and XML-based
data format, giving a portable text file that describes all
relevant equipments, their properties and the

connections between them [Fedai and Drath, 2005]. The
Standard is described in DIN V 44366 (2004) and
IEC/PAS 62424 (2005) which is called Computer Aided
Engineering Exchange (CAEX) and which specifies an
XML schema. ISO-15926-7 is a similar standard.
A prototype tool called CAEX Plant Analyser that links
a CAEX description with a report from a signal-based
plant disturbance analysis tool (PDA) is reported in this
article. The features are:
• Capture of process topology using CAEX;
• Parsing and manipulation of the description;
• Linkage of plant description and results from data-

driven analysis;
• Generation of root cause hypotheses;
• Logical tools to give root cause diagnosis and

process insights.
The CAEX file describes items of equipment in the
plant such as tanks, pipes, valves and instruments and
how they are linked together physically and/or through
electronic control signals (the plant topology). The term
topology is used here in its meaning as the physical
structure of a network. The PDA report file gives
information about the plant disturbances, for instance
the period, intensity and regularity of an oscillation, the
measurement points where it was detected and any non-
linearity detected in the time trends.
A reasoning engine finds physical paths and control
paths in the plant and the connections between items of
equipment, and determines root causes for plant-wide
disturbances. It can also verify that there is a feasible
propagation path between a candidate root cause and the
other locations in the plant where secondary
disturbances have been detected.

x Corresponding author:
 e-mail: n.thornhill@ee.ucl.ac.uk
 Tel: +44 20 7679 3983

Nina Thornhill
Typewritten Text
Authors' final copy of paper published in Computers & Chemical Engineering, 31, 2006, pp 86-99.

2

The system is a working prototype that combines a
qualitative process model with data-driven analysis in a
new way, exploiting the opportunities of CAEX for
representation of the process connectivity. It integrates a
parser reading a CAEX XML file, a file of numerical
results from signal-based analysis and a reasoning
engine within a graphical user interface. That there is a
need for progress in this area is clear e.g. from Maurya
et. al., (2004) who commented that there are hardly any
research articles dealing with the qualitative analysis of
large process flowsheets. This paper is therefore
amongst the first contributions to research in this field
and it shows the CAEX standard for representation of
process information in XML can make a contribution to
plant-wide process monitoring and diagnosis.
Section 2 of the paper describes the background and
places the work of this paper in context. Section 3
describes a parser which interprets the XML and PDA
files, and the reasoning engine which has been written in
Prolog. A case study is presented in Section 4, which
also illustrates a graphical user interface which allows
the user to pose queries. The paper ends with a critical
evaluation of the contributions of the work and a
conclusion.

2. Background and context
The CAEX Plant Analyser is a hybrid system because it
combines a qualitative process model with analysis of
quantitative process history data. This section places
qualitative modelling in the context of other approaches
such as signed directed graphs (SDGs) and also
discusses quantitative process data analysis for plant-
wide control loop performance assessment and
diagnosis.

Quantitative and qualitative process models: The review
series by Venkatasubramanian et. al., (2003a, 2003b,
2003c) discussed methods for detection, isolation and
diagnosis of faults in chemical processes, classifying the
available methods into quantitative and qualitative
model-based methods and quantitative and qualitative
process history based methods.
Quantitative model based methods for fault detection
and isolation (FDI) seek for inconsistencies between
observed behaviour and the behaviour predicted by a
detailed model of a process. FDI based on first
principles models is a challenge in the process industries
because accurate, calibrated and validated models are
expensive to create and maintain
The Signed Digraph (SDG) is one of the main ways of
representing causal qualitative knowledge. Maurya et.
al., [2003a, 2003b] gave a comprehensive review of
graph-based approaches for safety analysis and fault
diagnosis of chemical process systems and showed how
to develop graph models systematically from a system
of differential-algebraic equations. Their utility in
qualitative analysis of process flowsheets was also
demonstrated. If the SDG is derived from an equation-

based model of the process, though, then the limitations
related to cost and maintenance would apply.

Quantitative process data analysis: Quantitative process
history based methods use measurements from the
process. The methods of interest in this article are those
which detect and characterize plant-wide disturbances in
a process control system.
Signal analysis for detection of oscillation has been
reported [Hägglund, 1995; Forsman and Stattin, 1999;
Miao and Seborg, 1999; Salsbury and Singhal, 2005;
Thornhill and Hägglund, 1997]. For plant-wide
detection a characterization and clustering step is needed
in addition to oscillation detection giving a report stating
which measurement is disturbed by each oscillation
[Thornhill et.al., 2003b]. Persistent non-oscillatory
disturbances are characterized by their spectra which
may have broad-band features or multiple spectral
peaks. Plant-wide detection involves a suitable distance
measure by which to detect similarity and clusters of
measurements with similar spectra [Thornhill et.al.,
2002; Xia and Howell, 2005; Tangirala et.al., 2005].
Signal analysis is also used for diagnosis of both non-
linear and linear root causes. Examples of non-linear
sources include control valves with excessive static
friction, on-off and split-range control, process non-
linearities leading to limit cycles, and hydrodynamic
instabilities such as slugging flows. Early studies used
the presence of prominent harmonics as an indicator of
non-linearity [Thornhill and Hägglund, 1997; Ruel and
Gerry, 1998], while recent methods include analysis of
the bispectrum [Choudhury et.al., 2004] and non-linear
time series analysis. A non-linear time series means a
time trend which is the output of a non-linear system.
Root cause diagnosis based on non-linearity has been
reported [Thornhill et.al., 2003a; Thornhill, 2005; Zang
and Howell, 2004; Zang and Howell, 2005] on the
assumption that the measurement whose time trend has
the highest non-linearity is closest to the root cause.
Tests based on routine operating data specifically for the
detection of sticking valves have been recently reviewed
and compared by Rossi and Scali, 2005.
Linear root causes of plant-wide disturbances include
poor loop tuning, controller interactions and recycle
problems involving coordinated flows of mass or
energy. Detection and diagnosis of some of these
problems using signal-based analysis is starting to be
reported [Xia and Howell, 2003; Zang and Howell,
2003; Bauer et.al., 2004] but it is not yet as advanced as
detection and diagnosis of non-linear root causes.

Qualitative and hybrid methods: Qualitative methods
use process insights from engineers and operators
derived from past experiences. An early and successful
expert systems project in the UK was published by Blue
Circle Industries (1990) while Harris et.al., (1996) used
an expert system to enhance the diagnosis of a control
loop performance assessment system in a newsprint
mill. Norvilas et. al. (2000) and Tatara and Cinar (2002)

3

have also successfully combined multivariate statistical
data analysis with expert systems for process fault
diagnosis. Cowan (2001) reviewed expert system
applications and concluded that systems with fixed goals
are more successful than those which have to balance
conflicting goals. The relevance of these comments is
that the reasoning engine in CAEX Plant Analyser is
rule based and could be regarded as a simple expert
system. The threats identified by Cowan are minimised
because the outcomes of the reasoning engine can be
determined algorithmically from the facts parsed from
the process schematic.
Signal analysis of a plant-wide disturbance can go some
way towards finding the root cause of a disturbance. The
results do not, however, take account of physical
relationships and connections between the
measurements. A knowledge of the process flowsheet
enhances the diagnosis, in particular about which loops
might disturb one another.
Stanfelj et al. (1993) provided a decision-making tree
which included cross-correlation between a feed
forward signal and the controlled variable of the loop
under analysis. Likewise, Owen et.al., (1998) showed an
application of control-loop performance monitoring in
paper manufacturing which accounted for upset
conditions of the whole mill and interactions between
control loops. Chiang and Braatz (2003) made similar
observations. Leung and Romagnoli (2002) integrated a
multivariate statistical analysis method with cause and
effect map of a process, which was set up manually, to
help in the diagnosis of faults, while Lee et.al., 2003
also combined SDGs with multivariate statistical
analysis for enhanced diagnosis. It is clear that signal-
based analysis is enhanced by the capture and
integration of cause and effect information from a
process schematic, a step which now can be automated
by the use of an XML representation

3. The CAEX plant analyser

3.1 Overview
An overview of CAEX Plant Analyser is presented in
Figure 1. One input is the CAEX input file which
describes the items of equipment in the plant such as
tanks, pipes, valves and instruments and how they are
linked together physically and/or through electronic
control signals. An example of a physical link (or path)
is a pipe carrying a flow of mass or energy, while an
example of a control link (or path) is a cable connecting
a valve to a controller carrying an electronic signal.
The PDA input file contains information about the plant
disturbances, for instance the period of oscillation, its
intensity and regularity, the measurement points where
each disturbance was detected and any non-linearity
detected in the time trends.

2. Input
data

parser

C#

1. CAEX
parser

4. Interface to
Reasoning Engine

3. Reasoning Engine

5. Graphical User Interface

plant
disturbance

analysis
(text file)

Prolog translated
to C# using P# plant

connectivity
(CAEX &

XML)

Figure 1. Overview of the CAEX Plant Analyser

The system components: The system architecture
consists of five components each with a primary
function and each designed using the object-oriented
approach. The purpose of the parsers is to read and
deconstruct the XML file containing the CAEX
description and the PDA results text file. The XML
parsing leads to lists of items of equipment and their
connections from which the algorithms in the reasoning
engine find physical and control paths in the plant and
the connections between equipments. With additional
results from signal-based analysis it also determines root
causes for plant-wide disturbances. It can also check that
there is a feasible propagation path between a candidate
root cause and all the other locations in the plant where
secondary disturbances have been detected. The user
interface makes it easy to present such queries and to
read the answers.

Programming and integration: Two programming
technologies were used to implement the system. Prolog
was used to implement the functions of the reasoning
engine and C# (“C sharp”) for all the remaining parts of
the system. This design combines the advantages of the
two different types of programming languages. The
declarative programming language Prolog exploits the
rule based nature of the connectivity information and the
procedural and object-oriented features of C# allow an
efficient parser and graphical application. The use of P#
[Cook, 2004a and 2004b] to translate Prolog code to C#
leads to an integrated system as a standard Windows
application.
Despite the translation of Prolog code into C#,
information is still represented in different ways due to
differing data types which exist in the two languages.
Therefore, an interface to the reasoning engine was
needed to convert data that must flow between the
components into the correct format. Each service
provided by the reasoning engine implemented in Prolog
could be accessed by a single call to a function provided
by the interface.

Distinctiveness of the approach: The distinctiveness of
the CAEX approach should be considered in the context
of successful recent developments in SDGs. In Maurya

4

et. al., (2004), for instance, the SGD was derived from a
mathematical model of the Tennessee Eastman
benchmark simulation process. It modelled the patterns
of deviations in the measurements when a fault from the
library of known faults was present. The CAEX process
representation has less predictive capability than an
SDG because it is derived from a process schematic and
not from a mathematical model. It gives binary (yes/no)
answers to queries about presence or not of physical
links and control paths, but not the signs of deviations
from a nominal operating point. On the other hand, it is
well suited to operate with data-driven signatures such
as signal non-linearity, oscillation period or spectral
grouping. When such signatures are used to characterise
a plant-wide disturbance the outcome is a list of
measuring points where each plant-wide disturbance has
been detected. The binary nature of the process model
then works very well to verify or falsify hypotheses
about the disturbances and thus to infer results such as
root causes and propagation paths.

3.2 Core technology
A number of technologies, development tools and
platforms were used for the work. A brief description of
each is now given.

Extensible Markup Language and CAEX: XML is an
open standard developed by the XML Core Working
Group which forms part of the World Wide Web
consortium (Quin, 2005). XML uses plain text to
represent structured data and uses tags to mark up the
information. The beginning of a section is marked with
an opening tag and the end of a section is marked with
an end tag. For instance, XML defines a section of a
document called Plant as shown below:
 <Plant PlantName="Plant1">
 ...
 </Plant>
The tag </Plant> marks the end of this part of the
document and hence the end of the description of the
plant. Tags can also contain attributes, in the example
the attribute is PlantName whose value is Plant1.
The structure and possible content of an XML document
is defined in an XML Schema which specifies which
tags are allowed and what attributes they can have. A
valid XML document must conform to the schema and
the schema for representing an industrial plant is defined
in Computer Aided Engineering Exchange (CAEX).
CAEX is a vendor independent data exchange format
used to describe plant information including the
describing of a hierarchical and interconnected plant
topology. It was developed jointly by a consortium of
companies among them ABB. The relevant standard is
IEC/PAS 62424 (2005).

Comos PT and the CAEX Exporter: Comos PT (Innotec
GmbH, Schwelm, Germany) is a Computer-Aided
Design suite that includes object-oriented process
diagrams, among many other features. It has a library of

elements present in industrial and chemical plants such
as pipes, condensers and columns from which to build
up the plant topology. The CAEX exporter application
creates an XML file compatible with the CAEX XML
schema from Comos PT data.
The user has to make decisions about the level of detail
to be included and the naming conventions. In the
application presented here a top level process schematic
such as the one shown in Figure 2 contains enough
detail (the heavy highlighting in Figure 2 will be
discussed later). Some planned future rules in the
reasoning engine will distinguish between process and
utilities streams to enable the analysis of root causes of
plant-wide disturbances propagating through utilities.

FC4

LC2

LC3

TI2
FC7

FC1

FI4

FI1
FI2

PC2

FI5

TI6

TI1

FC8

TI3

FI3

PI2

FC3

Cond.

PI1

TI4

TC1

TI5

FC6

LC1

PC1

Cond.

Steam

Steam

FC5
TC2

TI8

TI7

Product

Feed

Steam

2.
3.

4.

1.

5.

6.

7 & 8.

9.

10.
11.

12. 13.

14.

15.

16.

17.

18.

19.

20.

22.

21.

23.

24.

25.

26.

27.

28.

29.

30.

AA

BB

FC4FC4

LC2LC2

LC3LC3

TI2TI2
FC7FC7

FC1FC1

FI4

FI1FI1
FI2FI2

PC2PC2

FI5FI5

TI6TI6

TI1TI1

FC8FC8

TI3TI3

FI3FI3

PI2PI2

FC3FC3

Cond.

PI1PI1

TI4TI4

TC1TC1

TI5TI5

FC6FC6

LC1LC1

PC1PC1

Cond.

Steam

Steam

FC5FC5
TC2TC2

TI8TI8

TI7TI7

Product

Feed

Steam

2.
3.

4.

1.

5.

6.

7 & 8.

9.

10.
11.

12. 13.

14.

15.

16.

17.

18.

19.

20.

22.

21.

23.

24.

25.

26.

27.

28.

29.

30.

AA

BB

Figure 2. Process schematic (courtesy of J.W. Cox,
Eastman Chemical Company).

Plant Disturbance Analyser (PDA): PDA has brought
together published data-driven plant-wide disturbance
analysis and diagnosis methods in one application
within ABB’s industrial product portfolio [Horch et.al.,
2005]. Its relevance to this article is that it produces the
report giving the measurement locations where plant-
wide disturbances have been detected, a characterization
of the disturbance (e.g. the oscillation period, the signal
non-linearity) and an ordering of the measurements in
order of the amount of non-linearity.

Microsoft .Net: Microsoft .Net (“dot net”) allows
applications to integrate and communicate easily. It
consists of the Microsoft .Net Framework, development
tools to develop software for .Net, and client and server
software. The .Net Framework is a run-time
environment which allows programs built using
different programming languages and running on
different supported platforms to exchange data and work
together through the use of platform-independent
technologies such as XML. The framework hides the
heterogeneity of the different environments and
provides class libraries and a uniform environment.

5

The C# Programming Language: The whole of the
CAEX Plant Analyser Application except for the
reasoning engine is written in the C# programming
language. C# was developed by Microsoft and contains
similarities with Java and C++ and uses object-oriented
features. It is supported by .Net and includes a number
of classes that aid working with XML and the creation
of Graphical User Interfaces.

Prolog: Prolog (PROgramming LOGic) is a declarative
programming language which uses rules called
predicates and facts to determine whether a query is true
or false. It develops knowledge from the predicates and
facts. For example, given that pipe1 is connected to
valve1, and valve1 is connected to pipe2, and that a path
is a list of connections, it is clear that there exists a path
between pipe1 and pipe2. Prolog is able to determine
that this is logically the case by applying its rules. The
Prolog environment was P# which was developed by J.J.
Cook in the Laboratory for Foundations of Computer
Science at the University of Edinburgh. It includes a
subset of the Prolog programming language as a native
implementation language for the .NET platform and
interoperation is achieved by means of C# objects
created from Prolog.

3.3 The CAEX and input data parsers

CAEX file structure: A CAEX file is organised in a tree
structure. A CAEX file contains four top level sections,
SystemHierarchy, InterfaceClassLib, Role-
ClassLib and SystemUnitClassLib. The main
relevance to the work in this article is the
SystemHierarchy section, the structure of which is
given in Figure 3.
Each SystemHierarchyElement section has an
attribute called SystemUnitInstanceName and
represents a separate SystemUnitInstance. The
SystemUnitInstanceName gives a description of the
topology of a section of a plant.
Within SystemHierarchyElement is a section called
SingletonClassDescription. Inside this are the
InternalElements and InternalLinks. Each
InternalElement section represents a particular unit

in the plant therefore every tank, pipe, condenser and so
on has an entry in this section of the document. The
description of plant items in CAEX is recursive and an
InternalElement may contain further Internal-
Element sections. An InternalLink represents a
link between two elements in the plant, for example, a
pipe that is joined to the input of a valve will have an
InternalLink entry which specifies this information.
The list of InternalLinks describes the topology of
the plant.

Parsing: Parsing involves reading a text document,
identifying key words and symbols and converting the
information into a data structure which can be operated
upon and manipulated. The parser in the CAEX Plant
Analyser application has two modules (1 and 2 in Figure
1). The CAEX Parser reads the CAEX file and produces
the Plant Object Model which is an object-oriented
representation of the plant topology. The Data File
Parser reads the PDA report file and organizes the
information within it.

CAEX Parser: The CAEX parser takes as input an
XML document conforming to the CAEX standard. It
also performs the functions listed in Table 1 so that it
can provide the graphical user interface and the
reasoning engine with information about the plant.
The parsing code is contained within a function which
takes as its input the name of the CAEX file, parses the
file and returns the number of internal links found. It
traverses the tree structure of the CAEX file looking for
InternalLink tags. When such a tag is encountered,
the link name and the two elements at either end of the
link are read and stored. The algorithm includes a check
to determine if the element has been encountered before,
and if it is new then a new Element object is added to
the list of elements encountered so far. An
InternalLink object of the same name is created
containing references to the two Element objects which
are present in the link and added to the list of
InternalLinks present in the topology.

.

.

.

.

.

SystemHierarchyElement

SingletonClassDescription

InternalElement

InternalLink

InternalLink

InternalElement

InternalElement

SystemHierarchyElement

SystemHierarchyElement
.
.
.

InterfaceClassLib

RoleClassLib

SystemUnitClassLib

SystemHierarchy

CAEXFile

Figure 3. The CAEX file structure

6

Input data parser: The input data file is the PDA report
containing the results from plant-wide disturbance
analysis of measurements from the indicators and
controllers in the operating plant. The information in the
file includes:
• The period of oscillation [Thornhill et.al., 2003b];
• The standard deviation in the period of oscillation;
• The signal power present in the oscillation;
• The non-linearity index [Thornhill, 2005];
• The plant-wide disturbance or disturbances which

affect the element.
The function of the input data parser is to read this data
file and manipulate it to enable the reasoning engine and
User Interface to access the required data. One of its
functions is to convert the CAEX name of an element
into a legal Prolog name by removing characters and
features that are invalid in Prolog.

Table 1. Functions provided by the CAEX parser
Functions provided by the CAEX Parser

Return the list of elements in the plant.

Return the list of the links in the plant.

Return the name of the element at the input and output of a
specified link.

Return the number of links present in the topology.

Return the number of elements present in the topology.

Search the topology to find out if a specific element exists in it.

Search the topology to find out if a specific link exists in it.

3.4 The Prolog reasoning engine
The reasoning engine uses the information that has been
parsed from the CAEX representation of a plant
schematic to give responses to queries. The methods in
the prototype include:
• Path finding (physical path, control path, directly

connected elements);
• Analysis of control loops and indicators (non-linear

controllers and indicators, disturbance-rejecting
controller, proxy measurement);

• Root cause analysis (root cause diagnosis, faulty
elements).

This section describes how the reasoning is achieved.

Prolog basics: Facts in Prolog define the characteristics
of specific objects. The facts in the CAEX Plant
Analyser are parsed from the CAEX description and are
sent dynamically to the reasoning engine from the
Parser. An example of a fact is:
link(pfb1lc2,pfb1fi3). % pfb1lc2 is

%linked to pfb1fi3
Facts can be queried by a Prolog program or by direct
interaction in a Prolog environment. The queries below
illustrate that links are directional, thus allowing the
direction of flow to be encoded:
?- link(pfb1lc2,pfb1fi3)
yes

?- link(pfb1fi3,pfb1lc2)
no
Lists are data structures such as:
[tank 1, tank 2, tank 3]
Rules are statements about relationships between objects
which use the syntax :- (if), a comma , (and) and a
semicolon ; (or). The next example is a predicate called
physicaltravel which uses a rule to test if there
exists a link between X and B that is not via signal lines.
If the answer is yes then it adds input argument B to list
Path. Called recursively, this line of code builds up a
physical path in the list Path.
physicaltravel(X,B,Path,[B|Path]) :-
 link(X,B),
 not(signalline(X)),
 not(signalline(B)).

Path finding: Path finding provides information to the
user about physical paths and control paths through the
plant between specified start and end points. A physical
path is via pipes and other physical elements such as
columns. The control path is via signal lines, controllers
and indicators. The program receives as inputs the
specified start and end points and uses the list feature in
Prolog to build lists of the intermediate elements and
thereby to find path. There may be multiple paths and
also no paths; both of these cases are handled.
The Prolog code for finding a physical path is equivalent
to the procedural algorithm shown in Figure 4. In the
case of multiple paths from any element the paths are
each followed in turn. All the paths are returned and the
numbers of elements in each path are compared by the
C# calling function to find the shortest. The presence of
a recycle can be detected searching for paths with the
same element as the start and end. This example
illustrates how Prolog reasons from rules given a set of
facts. Control paths are determined in a similar manner
with the constraint that the path is via signal lines.

Finding control loops and indicators: Basic queries such
as controller(X) find controllers, indicators and
signal lines. A predicate called controlloop
determines other physical elements that are part of a
loop. The rule is that there is a signal line coming into
the element from a controller or there is a signal line that
leaves the element that is linked to a controller.

Indicator and controller status: Queries about the
operational status of indicators and controllers use the
plant topology and the results from signal-based PDA
analysis. Control loops with non-linearity present in the
process variable (PV), output (OP) or set point (SP) are
identified from the PDA results and so are controllers
achieving disturbance rejection. The rule for disturbance
rejection is that the OP is a member of a disturbed
cluster while the PV is not. Physically this indicates
variability being successfully diverted from the
controlled variable to the manipulated variable.

7

Other rules exploit the integration of the data-driven
analysis and the plant topology to test for loops in
manual and to detect ratio, feedforward and cascade
configurations. For instance, the rule to detect a cascade
configuration is that the OP of the master loop is equal
to the SP of the slave loop.

Automated root cause diagnosis: The prototype CAEX
plant analyser uses plant topology to automate the
finding of root causes due to non-linear effects such as
sticking valves. Its purpose is to use information about
process layout and connectivity from the CAEX file to
enhance the signal-based analysis. It resolves
ambiguities and verifies that feasible propagation paths
exist from the proposed root cause to other places in the
plant where the disturbance has been detected.
Studies have shown that control loops whose signals
have non-linearity are candidates for the root cause.
Predicates for dealing with the non-linear case include:
possiblerootcausecontrollers which finds
controllers with non-linearity in both PV and OP,
possiblerootcauselements which find the valve
connected a possible root cause controller and
faultyelement which finds plant elements connected
to indicators where non-linearity has been detected.
Faulty elements give a reference point to find which
element is upstream and downstream. The key feature of
the rootcause predicate is that it looks for evidence
that non-linearity has spread.
The checklink predicate finds valves A such that A is
connected (linked) to B and B is linked to C, subject to
the constraints that valve A is a possible-
rootcauseelement of disturbance group N, that B is
a pipe and C is a pipe connected to a faulty element.
Links are directional and hence the checklink

predicate finds upstream valves. The rootcause
predicate returns A as the root cause if the checklink
predicate finds such a valve. It also returns A as the root
cause if C is linked to D and D is linked to A, where C
is a faulty element and D is any element. This takes care
of cases such as level controls where the level is
controlled on the outflow. If more than one root cause is
returned then a further rule chooses the one that has
paths to the others, i.e. the one furthest upstream.

3.5 Interface to the reasoning engine
This section explains the way in which the plant object
model is passed to the reasoning engine. The reasoning
engine was developed in Prolog and then translated to
C#, hence original Prolog data-types are transformed
into C# objects. The interface class includes the code
which hides the heterogeneity of the data types and
passes the input objects to the reasoning engine and
returns the results in the correct format.

Calling Prolog predicates from C#: Prolog predicates
can be called from C#. The first thing to be done is to
add the calling assembly, this is done by the
sharp.AddAssembly instruction. An example would
be a call to a Prolog predicate called createBasin.1.
After translation from Prolog to C# using P#, the
predicate name becomes a C# method called
Create_Basin which calls the predicate and finds the
answer in Prolog.

Reading plant objects: The parser passes the plant
connectivity information to Prolog. These details must

1 A basin is a source or sink at the plant boundary.

input from element A
and to element B

physicalpath(A,B,Path)

put A into Path list

stop

add B to list Path

reverse path

display path

query all Paths from
physicaltravel(A,B,Visited,Path)

reverse paths

display paths

stop

Y

N put A into Visited list is A linked
to B?

is C in the
Visited list?

find next element C
linked to X

is C equal
to B

physicaltravel(X,B,Visited,Path)

add C to the Visited list

recursive query to
physicaltravel(C,B,Visited,Path)

assign the Visited list to
Path

add B to list Path

return

return

All potential paths
from element X have

been explored.

Paths that end at
element B are

reported.

Y

N

Y

Y

N

N

all links to X
followed?

Figure 4. Path finding logic in the Reasoning Engine

8

be read by Prolog and then added to its database of facts
in order to deal with the query the user may pose. Prolog
adds facts to the reasoning engine using a predicate
called assert. To add the facts that describe the plant
topology to the Prolog database, C# cycles through the
plant elements and makes a call containing the predicate
assert to the reasoning engine.

Interface functions: The user can pose queries such as:
physical path; control path; control loop; directly
connected elements as described in Section 4. In
Prolog, the physical path algorithm returns the path
between two elements via pipes and other elements, and
the control path returns the path via signal lines,
controllers and indicators only. For these queries the
element from which the path is required and the element
at the end point of the path are specified.
A number of different paths may be found and all the
results are packed into a data structure called an
ArrayList. The ArrayList is further manipulated in
order to put the shortest path into the first position of the
ArrayList. This was done by C# manipulating the
string produced by the reasoning engine. Finally, the
paths are presented in the graphical user interface.
The principles of the interfaces for other queries are
similar, though the type of answer may be different, for
instance a query whether an element is in a control loop
returns a yes/no answer.
The outputs of queries related to the analysis of root
causes contains a list of elements along with their
associated group of oscillation. The user of the
application is interested in knowing the element that is
the root cause of a fault and the oscillation group it
belongs to (and hence which fault it is causing).

3.6 Graphical user interface and integration
The features of the graphical user interface (GUI) are
implemented in the class CAEX Plant Analyser. The
CAEX Plant Analyser class and GUI provide the
framework which integrates all parts of the program. In
addition to presenting a visual environment to the user,
the interface also performs all the actions that make the
program work at run-time, such as execution of the
PlantParser. The functions of the GUI are shown in
Table 2.
The user sees the main program window which has a
menu bar and five tabs which display information and
allow the user to enter queries. An example is presented
in Section 4. The GUI also has Tooltips which tell the
user what a particular button or region does. These are
displayed when the mouse pointer is over the feature.

Integration: The system in C# is made up of a number
of components. Each system component is termed a C#
project, these contain the classes which implement the
functions of the system. The collection of C# projects
that make up the full system is called the solution.

The solution created for the system is made up of four
C# projects, CAEX Plant Analyser, Plant-
Representation, PrologQuery and Specifics.
The PlantRepresentation project contains
everything required to read, understand and manipulate
the relevant information in a CAEX file and PDA input
data. PrologQuery contains the reasoning engine and
interface. The Specifics project contains the
translation of the naming conventions in the process
flowsheet. The CAEX standard offers no semantics or
meaning so it is not possible to tell what is a valve or a
tank just from its name. A mapping is therefore needed
between the names of objects from the CAEX
representation and the names of objects from other
sources such as from PDA. Table 3 shows the projects
present in the overall C# solution and the functions of
the classes within each project.
On compilation, three projects Specifics, Plant-
Representation and PrologQuery become libraries
of functions called Dynamic Link Libraries (DLLs) in
the Windows operating system. The CAEX Plant
Analyser project compiles into an executable file. There
is an additional file Psharp.dll, a pre-compiled
library and part of P#, which contains C# definitions of
classes and data types which are required for Prolog
calls. The PrologQuery project makes use of the
definitions contained in this library. The overall system
is a Windows .Net application and can be started by
double-clicking on the CAEX Plant Analyser.exe
icon generated when the C# solution is compiled.

Table 2. Functions of the Graphical User Interface
Item Function

File menu Use the “Open CAEX file” item in this menu to
choose and open a CAEX file.
Use the “Open data file” item in this menu to
choose and open a data file.

Display
Plant
Diagram

Allows the user to select a bitmap image to
display a picture of the plant they are querying.

Internal
links

Displays information about the internal links
present in the opened CAEX file.

Elements Displays information about the internal links
elements present in the opened CAEX file.

Input data Displays information about the data in the opened
data file.

Perform
queries

Performs queries on the plant topology such as
find the shortest path between two elements in
the topology.

Root
cause

Displays details about working and faulty
controllers and indicators and possible causes of
faults in the plant.

Information
area

Plant and data information is displayed in this
area.

About Displays the About Box.

Computers & Chemical Engineering, Accepted for publication, May 2006

9

Table 3. Functions of the C# projects and classes
C# Project Classes Function of Classes

Element Represents and allows manipulation of a plant element

InternalLink Represents and allows manipulation of an InternalLink

PlantParser Contains functions which parse a given CAEX file, extracting
the elements and InternalLinks and creating the Plant Object
Model

Plant Representation

InputData Contains functions which parse a data file containing the results
from Plant-Wide Disturbance Analysis

Specifics Specifics Implements the naming convention used in the CAEX file
representing the plant. Identifies the element type (pipe,
controller, etc.) when given the CAEX name.

Prolog Query PrologQuery Presents a query to the reasoning engine and returns the result.

MainForm The main CAEX Plant Analyser GUI window.

AboutBoxForm The About Box window of the CAEX Plant Analyser application,
appears when the user selects the “About” menu option.

CAEX Plant Analyser

PlantDiagramForm The PlantDiagram window, appears when the user chooses to
display a Bitmap diagram of the plant.

Figure 5. Process schematic for the case study. The black spots show the locations of a plant-wide disturbance

and large spots indicate measurements whose time series showed non-linearity.

Computers & Chemical Engineering, Accepted for publication, May 2006

10

4. Example application
The application is from the Eastman Chemical Company
and was originally presented in Thornhill et.al., (2003a).
That paper described signal-based analysis using
measurements from the plant and also described the
manual steps using process information that the process
control engineers took to resolve ambiguities and check
the findings. The work of this paper was motivated by
that study, which called for an automated way of
incorporating information about the process layout and
connectivity.

Detection of plant-wide disturbances: Figure 5 shows
the process schematic. The black spots in the schematic
(placed by hand) indicate the locations where one of
three plant-wide disturbances was discovered by signal
analysis using the PDA tool. The larger spots show the
locations of measurements whose time series were non-
linear and therefore candidates for the root cause (see
Thornhill, 2005). The PDA report sent to the CAEX
Plant Analyzer gives the following information for each
measurement point in the plant:
• The period, regularity and strength of any oscillation

present;
• The plant-wide cluster to which the oscillation or

disturbance belongs;
• The amount of non-linearity detected in the time

trend.
In the previous paper (Thornhill et.al., 2003a), the
manual reasoning steps taken by the engineers towards
deducing the root cause of a disturbance were:
• Distinguishing measurement points that are part of a

control loop from those which are indicators. The
logic behind this is that control loops can generate
non-linearity and are thus candidate root causes but
passive indicators cannot;

• Determining connections between measurement
points in the disturbed cluster. The reasoning is that
disturbances are likely to propagate in the direction
of the process flow;

• Identifying a proxy (if one exists) for an unmeasured
quantity of interest;

• For a candidate root cause, establishing that a
feasibly propagation path exists to other places in the
plant showing the same disturbance.

CAEX Plant Analyser aids the engineer by using the
connectivity model of the process to determine which
among the candidates is the most likely root cause, and
by presenting evidence to support the conclusion. It
therefore automates the manual steps itemized above
and enables the engineer to become involved at a higher
level. The remaining tasks are to physically confirm the
diagnosis, for instance by means of a valve travel test,
and to write the maintenance order.

Root cause analysis: Figure 6 shows the GUI. The Root
Cause tab is the part of CAEX Plant Analyser where the
process connectivity information is linked with the data-

driven analysis. Examples of the queries it can answer
are:
• Disturbance-rejecting controllers, where the rule in

use is that the OP is disturbed while the PV is not
disturbed;

• Non-linear controllers, i.e. with non-linearity in PV
or OP or SP);

• Non-linear indicators (those with non-linearity in the
PV);

• Possible root cause controllers (those with
nonlinearity in PV and OP);

• The actual root cause selected from among the non-
linear controllers using the rootcause predicate
described in section 3.4.

The control valve of the control loop LC2 (Tag 22) was
identified as the root cause of the plant-wide disturbance
whose distribution is mapped in Figure 5. The
automated reasoning steps are that (a) the root cause is
associated with one of the measurement points where
there is non-linearity, (b) the root cause cannot be an
indicator, which rules out Tag 29 (FI3), (c) the
rootcause predicate determined that non-linearity has
spread downstream from LC2.

Confirming the root cause: The previous sub-section
indicated how CAEX Plant Analyser used the signal
analysis results from PDA and the process connectivity
model to propose the LC2 control loop as the source of
an oscillating disturbance. The control engineers can
now test the hypothesis. One standard test is an OP-MV
plot, where MV is the manipulated variable for the LC2
control loop and OP is the level controller output. In this
case, however, MV is the flow through LC2 control
valve and is not measured.
The proxy measurement function in CAEX Plant
Analyser suggests the use of FI3 (Tag 29) as a substitute
for the unmeasured MV because it is the next
downstream flow measurement. Although the flow in
FI3 is not equal to the flow through the LC2 control
valve, the logic behind its use as a proxy measurement is
that the FI3 is a disturbed measurement in the same
cluster. Its waveform should therefore be related to the
disturbance to the unmeasured flow even though the
numerical values in engineering units are not the same.
Figure 7 shows the time trends of LC2.OP and FI3.PV
and the plot of one versus the other (the OP-MV plot).
For a healthy valve the OP-MV plot should be a straight
line at 45o, however in this case it shows the classic
feature of a valve with a deadband.
Further interventionist tests were conducted as described
in Thornhill et. al, 2003(a) which confirmed the
diagnosis. At that time, the reasoning from plant
topology was done manually, but now PDA and CAEX
Plant Analyser can achieve the same result
automatically. They direct attention to the right valve so
that the amount of physical testing is minimized.

11

Propagation paths: A function of CAEX Plant Analyser
is to help the user with understanding propagation of a
disturbance from its root cause to all the other places in
the plant where secondary upsets were detected. The
Perform Queries tab (Figure 6) provides functions
which find the physical and control paths, as described
in Section 3.4.
In Figure 6, the upper half of the window shows
physical paths or control paths between two selected
elements. The output is in the form of a list such as is
shown in the panel labelled Shortest path. The query
requested the path in Figure 2 from decanter 1 marked
as A (which is level-controlled by LC2) to the valve in
the bottom right corner of Figure 2 marked B which
controls the liquid recycle. For the purposes of
visualization, the two physical paths found in the above
example are shown in Figure 2. Between them, these
physical paths link A to B via both columns 2 and 3. The
disturbances to columns 2 and 3 and the recycle that
were detected by PDA are thus consistent with the
hypothesis of LC2 as the root cause.

The current prototype does not mark up the schematic so
Figure 2 was produced manually. It is a target for the
future to provide an animated schematic, but the best
way to do this is not yet clear. The main issue is the
extent to which an animated schematic would be
integrated into displays already provided in the vendor’s
control system platform. This commercial decision is
needed first because the extent of integration will guide
the technical solution.
A further query asking for the paths both starting and
ending at A (decanter 1) returned paths which
highlighted all three of the recycles in the plant. These
paths involve Column 1 and therefore illustrate a
feasible propagation path from the root cause in LC2 to
the disturbances detected by PDA in Column 1.
The lower half of the window in Figure 6 allows queries
on individual elements in the topology. The program
poses queries to the reasoning engine. It finds out which
elements are directly connected to the selected one and
displays the results. The reasoning engine also
determines if the element is in a control loop. It will also
find a proxy measurement, if one exists.

Figure 6. The Perform queries tab in the GUI.

Plant Object Model and PDA report: The Elements
and Internal Links tabs of the GUI present the plant
object model. The Elements tab shows a list of all the
elements found in the topology while the Internal
Links tab shows a list of all the internal links and gives
the elements at the input and output of the link.

The Input Data tab of the application is populated
with the table of data read from the PDA report. For
each measurement point, it shows the oscillation period,
regularity and power, the plant-wide cluster number and
the results from non-linearity analysis.

12

 LC2.OP

FI3.PV

6 8 10 12 14 16

FI3.PV

LC2.OP

time/hours
Figure 7. Plots of the LC2 control valve output

(LC2.OP) and flow through the valve
(FI3.PV).

5. Critical evaluation and conclusions
Requirements for a plant-wide control loop performance
analysis system have been discussed by Paulonis and
Cox (2003) and Desborough and Miller (2002), and
more general criteria were laid down in
Venkatasubramanian et.al., (2003a). Table 4 lists the
relevant specifications. The prototype system has hit
several of these targets.

Table 4. Statements of requirements for plant-wide

control loop performance analysis
Authors Requirements met
Desborough and
Miller (2002)

Facility-wide approaches
including behaviour clustering;
Automated model-free causal
analysis;
Incorporation of process
knowledge such as the role of
each controller.

Paulonis and Cox
(2003)

Detection of the presence of
one or more periodic
oscillations;
Detection of non-periodic
disturbances and plant upsets;
Determination of the locations
of the various
oscillations/disturbances in the
plant and their most likely root
causes.

Venkatasubramanian,
Rengaswamy, Yin
and Kavuri (2003a)

Rapid detection and diagnosis;
Ability to isolate as well as
detect faults;
Ability to identify new and
unseen faults;
Ability to diagnose multiple
faults;
Ability to explain the reasons
for decisions;
Minimal modelling requirement.

Contributions: By itself, the signal-based analysis used
in PDA reports clusters of multiple periodic oscillations
and non-periodic disturbances. PDA in combination
with CAEX Plant Analyser can offer hypotheses about
the location and nature of the root causes, and the GUI

makes it very easy to test the hypotheses for instance by
presenting the propagation path from the root cause to
all measurement points where the disturbance was
detected by PDA. The CAEX Plant Analyser has
incorporated process knowledge by linking the plant
topology and a reasoning engine with the results from
plant disturbance analysis. It gives enhanced automation
to the process of disturbance detection and analysis by
means of rule-base reasoning which suggests candidate
root causes, establishes the propagation path and other
process insights such as proxy measurements for
quantities that are not monitored.
CAEX Plant Analyser provides automated causal
analysis that is almost model-free. The main reason for
preferring model-free analysis is related to the cost of
producing a model and the difficulty of maintaining it.
A plant topology description from a process schematic
is a type of model. It is, however, easy to produce from
a CAD tool. The maintenance of accurate drawings is a
considerably easier and more routine task than the
maintenance of a mathematical model or SDG. Modern
integrated computer aided engineering tools mean that
changes made to one document propagate automatically
to other related documents including an updated CAEX
file. Another motivation for model-free analysis the
ability to detect and diagnose previously unseen faults.
The CAEX plant analyser can do this because the
signal-based analysis can characterize new signals and
the CAEX Plant Analyser can work out the location of
the root cause.

Limitations: Limitations of CAEX Plant Analyser in
identifying the correct root cause stem from two
sources. One is that the rule base is incomplete because
the science of root cause diagnosis is not yet complete.
If the root cause is a non-linear effect then the reasoning
using signal non-linearity as described here is effective.
The survey by Desborough and Miller (2002), and
others, have shown that the majority of root causes are
of these types. There remain, however, other causes of
plant-wide disturbances such as controller interaction
and structural effects such as the dynamics caused by
recycles. These do not have non-linear signatures and
enhanced signal analysis in PDA and rules to operate on
the PDA results are needed for these cases.
Another limitation is that, even when the root cause is a
non-linear effect, there may be no measurement
available at the exact source of the root cause. In fact,
this was the case in the example application in Section 4
and was addressed in that case by locating a proxy
measurement for the unmeasured flow through the
valve. The function of CAEX Plant Analyser is to help
engineers form and test hypotheses. If no proxy is
available then an outcome of a session with CAEX Plant
Analyser might to collect a new data set for analysis
with more measurements included from the region close
to the suspected root cause.
Further targets are the annotation of a process schematic
for visualization of disturbances and paths, and the

13

ability to explain decisions. Explanations could be
implemented through the Tooltips in the GUI. Progress
with these aspects depends on commercialization
because they will have to be integrated with the vendors
existing systems and house style.

Conclusions: The CAEX Plant Analyser has given a
new way forward to allow a user to pose queries about
the plant and to gain insights into the root causes of
plant-wide disturbances. To do this, it integrates an
electronic description of the plant topology and results
from signal-based analysis. Results produced from a
working Windows prototype have been presented
showing that the concept satisfies many of the
requirements previously called for in the literature.

6. Acknowledgements
The authors would like to thank John Cox and Michael
Paulonis of the Eastman Chemical Company for making
the case study available. Nina Thornhill gratefully
acknowledges the support of the Royal Academy of
Engineering (Global Research Award) and the UCL
team thanks ABB Corporate Research for their
sponsorship of the research.

7. References
Bauer, M. (2005). Data-Driven Methods for Process Analysis, PhD

Thesis, University of London.
Bauer, M., Thornhill, N.F., and Meaburn, A. (2004). Specifying the

directionality of fault propagation paths using transfer entropy.
DYCOPS 7 conference, Boston, July 5-7, 2004

Blue Circle Industries, plc. (1990). Real Time Process Control:
Improved Efficiency. Expert System Opportunities, Case Study 1,
HMSO, London.

Chiang, L.H., and Braatz, R.D. (2003). Process monitoring using
causal map and multivariate statistics: fault detection and
identification. Chemometrics and Intelligent Laboratory Systems,
65, 159-178.

Choudhury, M.A.A.S., Shah, S.L., and Thornhill, N.F. (2004).
Diagnosis of poor control loop performance using higher order
statistics. Automatica. 40, 1719–1728.

Cook, J.J. (2004a). P#: A concurrent Prolog for the .NET Framework,
Software: Practice and Experience, 34(9):815-845.

Cook, J.J. (2004b). Language Interoperability and Logic
Programming Languages, PhD Thesis, University of Edinburgh.

Cowan, R. (2001). Expert systems: aspects of and limitations to the
codifiability of knowledge, Research Policy, 30, 1355-1372.

Desborough, L., and Miller, R. (2002). Increasing customer value of
industrial control performance monitoring – Honeywell’s
experience, in AIChE Symposium Series No 326, 98, 153-186.

DIN V 44366. (2004). Specification for Representation of process
control engineering requests in P&I Diagrams and for data
exchange between P&ID tools and PCE-CAE tools, Beuth-
Verlag, 2004.

Fedai, M., and Drath, R. (2005). CAEX – A neutral data exchange
format for engineering data, ATP International Automation
Technology 01/2005, 3, 43-51.

Forsman, K. and Stattin, A. (1999). A new criterion for detecting
oscillations in control loops. European Control Conference,
Karlsruhe, Germany.

Hägglund, T. (1995). A control-loop performance monitor. Control
Engineering Practice. 3, 1543-1551.

Harris, T.J., Seppala, C.T., Jofriet, P.J., and Surgenor, B.W. (1996).
Plant-wide feedback control performance assessment using an

expert-system framework, Control Engineering Practice, 4, 1297-
1303.

Horch, A., Hegre, V., Hilmen K., Melbø, H., Benabbas, L.,
Pistikopoulos, E.N., Thornhill, N.F, and Bonavita, N. (2005).
Root Cause - Computer-aided plant auditing made possible by
successful university cooperation, ABB Review 2/2005, 44-48.

IEC/PAS 62424 (2005-6) Ed.1.0. (2005). Representation of process
control engineering requests in P&I diagrams and data exchange
between P&ID tools and PCE-CAE tools, VDE-Verlag, 2005.

Lee, G.B, Song, S.O.,. and Yoon, E.S. (2003). Multiple-fault diagnosis
based on system decomposition and dynamic PLS, Industrial &
Engineering Chemistry Research, 42, 6145-6154.

Leung, D., and Romagnoli, J. (2002). An integrated mechanism for
multivariate knowledge-based fault diagnosis, Journal of Process
Control, 12, 15-26.

Maurya, M.R., Rengaswamy, R., and Venkatasubramanian, V.
(2003a). A systematic framework for the development and
analysis of signed digraphs for chemical processes. 1. Algorithms
and analysis, Industrial and Engineering Chemistry Research, 42,
4789-4810.

Maurya, M.R., Rengaswamy, R., and Venkatasubramanian, V.
(2003b). A systematic framework for the development and
analysis of signed digraphs for chemical processes. 2. Control
loops and flowsheet analysis, Industrial and Engineering
Chemistry Research, 42, 4811-4827.

Maurya, M.R., Rengaswamy, R., and Venkatasubramanian, V. (2004).
Application of signed digraphs-based analysis for fault diagnosis
of chemical process flowsheets, Engineering Applications of
Artificial Intelligence, 17, 501–518.

Miao, T. and Seborg, D.E., (1999). Automatic detection of excessively
oscillatory feedback control loops. IEEE Conference on Control
Applications. Hawaii, 359-364.

Norvilas, A., Negiz, A., DeCicco, J.., and Cinar, A., 2000, Intelligent
process monitoring by interfacing knowledge-based systems and
multivariate statistical monitoring, Journal of Process Control,
10, 341-350.

Owen, J.G., Read, D., Blekkenhorst, H., and Roche, A.A. (1996). A
mill prototype for automatic monitoring of control loop
performance. Proceedings of Control Systems 96, Halifax, Novia
Scotia, 171-178.

Paulonis, M.A., and Cox, J.W. (2003). A practical approach for large-
scale controller performance assessment, diagnosis, and
improvement, Journal of Process Control, 13, 155-168.

Quin, L. (2005). Extensible Markup Language (XML), On-line:
http://www.w3.org/XML/ Accessed: 7th Sept 2005.

Rossi, M. and Scali, C., (2005). A comparison of techniques for
automatic detection of stiction: simulation and application to
industrial data. Journal of Process Control. 15, 505-514.

Ruel, M., and Gerry, J. (1998). Quebec quandary solved by Fourier
transform, Intech (August), 53-55.

Salsbury, T.I. and Singhal, A. (2005). A new approach for ARMA
pole estimation using higher-order crossings. Proceedings of ACC
2005, Portland, USA.

Stanfelj, N., Marlin, T.E., and MacGregor, J.F. (1993). Monitoring and
diagnosing process control performance: The single loop case,
Industrial and Engineering Chemistry Research, 32, 301-314.

Tangirala, A.K., Shah, S.L. and Thornhill, N.F. (2005). PSCMAP: A
new measure for plant-wide oscillation detection. Journal of
Process Control. 15, 931-941.

Tatara, E., and Cinar. A., (2002) An intelligent system for multivariate
statistical process monitoring and diagnosis, ISA Transactions, 41,
255-270.

Thornhill, N.F. and Hägglund, T. (1997). Detection and diagnosis of
oscillation in control loops. Control Engineering Practice. 5,
1343-1354.

Thornhill, N.F. (2005). Finding the source of nonlinearity in a process
with plant-wide oscillation, IEEE Transactions on Control System
Technology, 13, 434-443.

Thornhill, N.F., Cox, J.W., and Paulonis, M. (2003a), Diagnosis of
plant-wide oscillation through data-driven analysis and process
understanding, Control Engineering Practice, 11, 1481-1490.

14

Thornhill, N.F., Huang, B., and Zhang, H., (2003b). Detection of
multiple oscillations in control loops. Journal of Process Control.
13, 91-100.

Thornhill, N.F., Shah, S.L., Huang, B., and Vishnubhotla, A. (2002).
Spectral principal component analysis of dynamic process data.
Control Engineering Practice. 10, 833-846.

Venkatasubramanian, V., Rengaswamy, R., Yin, K., and Kavuri, S.N.
(2003a). A review of process fault detection and diagnosis Part I:
Quantitative model-based methods, Computers and Chemical
Engineering, 27, 293-311.

Venkatasubramanian, V., Rengaswamy, R., and Kavuri, S.N. (2003b).
A review of process fault detection and diagnosis Part II:
Qualitative model and search strategies, Computers and Chemical
Engineering, 27, 313-326.

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N., and Yin, K.
(2003c). A review of process fault detection and diagnosis Part

III: Process history based methods, Computers and Chemical
Engineering, 27, 327-34.

Xia, C. and Howell, J. (2003). Loop status monitoring and fault
localisation. Journal of Process Control. 13, 679-691.

Xia, C. and Howell, J. (2005). Isolating multiple sources of plant-wide
oscillations via spectral independent component analysis. Control
Engineering Practice. 13, 1027-1035.

Zang, X.Y. and Howell, J. (2003). Discrimination between bad turning
and non-linearity induced oscillations through bispectral analysis.
Proceedings of SICE Annual Conference, Fukui, Japan.

Zang, X.Y., and Howell, J., (2004). Correlation dimension and
Lyapunov exponents based isolation of plant-wide oscillations.
DYCOPS 7, Boston July 5-7.

Zang, X.Y., and Howell, J. (2005). Isolating the root cause of
propagated oscillations in process plants. International Journal of
Adaptive Control Signal Processing, 19, 247-265

