282 research outputs found

    Hormonal modulation of disseminating endodontic infections

    Full text link
    OBJECTIVE: DEI sexual dimorphism has been observed where male but not female mice mildly immunosuppressed by blockade of IL-1 signaling, and challenged with an endodontic infection, developed facial abscesses, weight loss, splenomegaly, and sepsis which was often fatal. The central hypothesis is that estrogen increases the numbers and function of N1 neutrophils, resulting in effective anti- microbial immunity to DEI, whereas androgens are inhibitory. The aim of this study is to determine the effict of sex hormone modulation in protective immune responses to DEI and sepsis, specifically neutrophil-mediated resistance. MATERIALS AND METHODS: The therapeutic effects of estrogen and the androgen receptor antagonist enzalutamide (ENZ) on DEI will be evaluated in adult male group through direct observation of facial abscess formation, fatigue, and malaise. Additionally, survival rates, weight change, and spleen weights will be recorded and compared between treatment groups. Male mice sub-groups will be categorized by hormonal treatments, which will be administered daily throughout a 31 day observation period after bilateral mandibular pulpal exposures and initiation of endodontic infections. RESULTS: Group 1 received no estrogen and no enzalutamide treatment following pulpal exposures. And 7 mice (n=7) were included in the experiment, however 1 mouse’s final weight was unaccounted for due to the animal facility’s onsite veterinarian sacrificing and removing the mouse during their daily heath assessment. Throughout the course of the 31 day experimental timeline, average weight loss of this group was 4.72 grams. The average final spleen weight was 0.11 grams. Group 2 received enzalutamide treatment only following pulpal exposures and had a total of 12 mice (n=12). 2 mice were observed to have developed facial abscesses over the course of the 31 day hormone treatment period, and 8/12 survived to the end of the experimental period. Throughout the course of the 31 day experimental timeline, the average weight loss of this group was 3.63 grams. The average final spleen weight was 0.11 grams. Group 3 received estrogen treatment only following pulpal exposures and had a total of 8 mice (n=8). 2 mice did not survive the pulpal exposure procedure and accounted for the only mice that were lost in this group resulting in 6/8 mice surviving through the experimental period. Throughout the course of the 31 day experimental timeline, the average weight loss of this group was 3.66 grams. The average final spleen weight was 0.083 grams. Group 4 received both estrogen and enzalutamide treatment simultaneously, totaling in 11 mice (n=11). Throughout the experimental period, only 1 mouse was found deceased following the first round of hormonal treatments. Throughout the course of the 31 day experimental timeline, the average weight loss of this group was 1.45 grams. The average final spleen weight was 0.078 grams. CONCLUSION: Estrogen’s (E2) has a protective role on immune cells and function against DEIs, while enzalutamide (ENZ) appears to effect protection minimally. Based on the comparisons between weight changes, spleen weights, and survival rates, a combination of E2 and ENZ resulted in the least overall weight loss and spleen weights throughout the course of the experiment while the groups that received no treatment and only ENZ resulted in the highest average weight loss and spleen weights

    Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    Get PDF
    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a ,25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.open1

    A novel approach in the treatment of neuroendocrine gastrointestinal tumors: Additive antiproliferative effects of interferon-γ and meta-iodobenzylguanidine

    Get PDF
    BACKGROUND: Therapeutic options to effectively inhibit growth and spread of neuroendocrine gastrointestinal tumors are still limited. As both meta-iodobenzylguanidine (MIBG) and interferon-γ (IFNγ) cause antineoplastic effects in neuroendocrine gastrointestinal tumor cells, we investigated the antiproliferative effects of the combination of IFNγ and non-radiolabeled MIBG in neuroendocrine gut STC-1 and pancreatic carcinoid BON tumor cells. METHODS AND RESULTS: IFNγ receptors were expressed in both models. IFNγ dose- and time-dependently inhibited the growth of both STC-1 and of BON tumor cells with IC(50)-values of 95 ± 15 U/ml and 135 ± 10 U/ml, respectively. Above 10 U/ml IFNγ induced apoptosis-specific caspase-3 activity in a time-dependent manner in either cell line and caused a dose-dependent arrest in the S-phase of the cell cycle. Furthermore, IFNγ induced cytotoxic effects in NE tumor cells. The NE tumor-targeted drug MIBG is selectively taken up via norepinephrine transporters, thereby specifically inhibiting growth in NE tumor cells. Intriguingly, IFNγ treatment induced an upregulation of norepinephrine transporter expression in neuroendocrine tumors cells, as determined by semi-quantitative RT-PCR. Co-application of sub-IC(50 )concentrations of IFNγ and MIBG led to additive growth inhibitory effects, which were mainly due to increased cytotoxicity and S-phase arrest of the cell cycle. CONCLUSION: Our data show that IFNγ exerts antiproliferative effects on neuroendocrine gastrointestinal tumor cells by inducing cell cycle arrest, apoptosis and cytotoxicity. The combination of IFNγ with the NE tumor-targeted agent MIBG leads to effective growth control at reduced doses of either drug. Thus, the administration of IFNγ alone and more so, in combination with MIBG, is a promising novel approach in the treatment of neuroendocrine gastrointestinal tumors

    Safety and immunogenicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial

    Get PDF
    Background: Lipid nanoparticle (LNP) encapsulated self-amplifying RNA (saRNA) is a novel technology formulated as a low dose vaccine against COVID-19. Methods: A phase I first-in-human dose-ranging trial of a saRNA COVID-19 vaccine candidate LNP-nCoVsaRNA, was conducted at Imperial Clinical Research Facility, and participating centres in London, UK, between 19th June to 28th October 2020. Participants received two intramuscular (IM) injections of LNP-nCoVsaRNA at six different dose levels, 0.1-10.0μg, given four weeks apart. An open-label dose escalation was followed by a dose evaluation. Solicited adverse events (AEs) were collected for one week from enrolment, with follow-up at regular intervals (1-8 weeks). The binding and neutralisation capacity of anti-SARS-CoV-2 antibody raised in participant sera was measured by means of an anti-Spike (S) IgG ELISA, immunoblot, SARS-CoV-2 pseudoneutralisation and wild type neutralisation assays. (The trial is registered: ISRCTN17072692, EudraCT 2020-001646-20). Findings: 192 healthy individuals with no history or serological evidence of COVID-19, aged 18-45 years were enrolled. The vaccine was well tolerated with no serious adverse events related to vaccination. Seroconversion at week six whether measured by ELISA or immunoblot was related to dose (both p<0.001), ranging from 8% (3/39; 0.1μg) to 61% (14/23; 10.0μg) in ELISA and 46% (18/39; 0.3μg) to 87% (20/23; 5.0μg and 10.0μg) in a post-hoc immunoblot assay. Geometric mean (GM) anti-S IgG concentrations ranged from 74 (95% CI, 45-119) at 0.1μg to 1023 (468-2236) ng/mL at 5.0μg (p<0.001) and was not higher at 10.0μg. Neutralisation of SARS-CoV-2 by participant sera was measurable in 15% (6/39; 0.1μg) to 48% (11/23; 5.0μg) depending on dose level received. Interpretation: Encapsulated saRNA is safe for clinical development, is immunogenic at low dose levels but failed to induce 100% seroconversion. Modifications to optimise humoral responses are required to realise its potential as an effective vaccine against SARS-CoV-2. Funding: This study was co-funded by grants and gifts from the Medical Research Council UKRI (MC_PC_19076), and the National Institute Health Research/Vaccine Task Force, Partners of Citadel and Citadel Securities, Sir Joseph Hotung Charitable Settlement, Jon Moulton Charity Trust, Pierre Andurand, Restore the Earth

    Neck circumference is associated with adipose tissue content in thigh skeletal muscle in overweight and obese premenopausal women

    Get PDF
    Neck circumference (NC) has been proposed as a simple and practical tool, independently associated with cardiometabolic risk factors. However, the association of NC with inter-muscular adipose tissue (IMAT) is still to be determined. We aimed to examine the association of NC with thigh IMAT, and visceral adipose tissue (VAT) measured with computed tomography (CT) in overweight/obese women. 142 premenopausal overweight and obese Caucasian women participated in this crosssectional study. NC was measured with an inextensible metallic tape above the thyroid cartilage according to International Society for Advancement of Kinanthropometry protocol. Thigh IMAT and VAT volumes were measured with a single cross-sectional CT. Regarding the covariates, fat mass (FM) was assessed with dual-energy x-ray absorptiometry and physical activity was objectively measured with accelerometry. NC was positively associated with thigh IMAT and VAT volumes (standardized β coefcient: β=0.45, P-value= ≤0.001, β=0.60, P=≤0.001; respectively), which persisted after adjusting for age, height, overall FM or moderate-to-vigorous physical activity. Our fndings show that NC is associated with thigh IMAT volume in overweight and obese premenopausal Caucasian women, regardless of the amount of lower-body fatness. These results suggest underscoring the relevance of NC as a marker of adipose tissue content in thigh skeletal muscle.Portuguese Foundation for Science and Technology Sapiens 358007/99Oeiras City CouncilBecel PortugalRoche Pharmaceuticals PortugalCompal PortugalUniversity of Granada Plan Propio de Investigacion 2016 -Excellence actions: Unit of Excellence on Exercise and Health (UCEES)Junta de AndaluciaEuropean Union (EU) SOMM17/6107/UGRFundacion Carolina C.201657496

    Novel curcumin- and emodin-related compounds identified by in silico 2D/3D conformer screening induce apoptosis in tumor cells

    Get PDF
    BACKGROUND: Inhibition of the COP9 signalosome (CSN) associated kinases CK2 and PKD by curcumin causes stabilization of the tumor suppressor p53. It has been shown that curcumin induces tumor cell death and apoptosis. Curcumin and emodin block the CSN-directed c-Jun signaling pathway, which results in diminished c-Jun steady state levels in HeLa cells. The aim of this work was to search for new CSN kinase inhibitors analogue to curcumin and emodin by means of an in silico screening method. METHODS: Here we present a novel method to identify efficient inhibitors of CSN-associated kinases. Using curcumin and emodin as lead structures an in silico screening with our in-house database containing more than 10(6 )structures was carried out. Thirty-five compounds were identified and further evaluated by the Lipinski's rule-of-five. Two groups of compounds can be clearly discriminated according to their structures: the curcumin-group and the emodin-group. The compounds were evaluated in in vitro kinase assays and in cell culture experiments. RESULTS: The data revealed 3 compounds of the curcumin-group (e.g. piceatannol) and 4 of the emodin-group (e.g. anthrachinone) as potent inhibitors of CSN-associated kinases. Identified agents increased p53 levels and induced apoptosis in tumor cells as determined by annexin V-FITC binding, DNA fragmentation and caspase activity assays. CONCLUSION: Our data demonstrate that the new in silico screening method is highly efficient for identifying potential anti-tumor drugs

    Milk exosomes: beyond dietary microRNAs

    Get PDF
    Extracellular vesicles deliver a variety of cargos to recipient cells, including the delivery of cargos in dietary vesicles from bovine milk to non-bovine species. The rate of discovery in this important line of research is slowed by a controversy whether the delivery and bioactivity of a single class of vesicle cargos, microRNAs, are real or not. This opinion paper argues that the evidence in support of the bioavailability of microRNAs encapsulated in dietary exosomes outweighs the evidence produced by scholars doubting that phenomenon is real. Importantly, this paper posits that the time is ripe to look beyond microRNA cargos and pursue innovative pathways through which dietary exosomes alter metabolism. Here, we highlight potentially fruitful lines of exploration

    Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice

    Get PDF
    Background: Alzheimer’s disease (AD) brain shows an ongoing inflammatory condition and non-steroidal antiinflammatories diminish the risk of suffering the neurologic disease. Cannabinoids are neuroprotective and antiinflammatory agents with therapeutic potential. Methods: We have studied the effects of prolonged oral administration of transgenic amyloid precursor protein (APP) mice with two pharmacologically different cannabinoids (WIN 55,212-2 and JWH-133, 0.2 mg/kg/day in the drinking water during 4 months) on inflammatory and cognitive parameters, and on 18F-fluoro-deoxyglucose (18FDG) uptake by positron emission tomography (PET). Results: Novel object recognition was significantly reduced in 11 month old Tg APP mice and 4 month administration of JWH was able to normalize this cognitive deficit, although WIN was ineffective. Wild type mice cognitive performance was unaltered by cannabinoid administration. Tg APP mice showed decreased 18FDG uptake in hippocampus and cortical regions, which was counteracted by oral JWH treatment. Hippocampal GFAP immunoreactivity and cortical protein expression was unaffected by genotype or treatment. In contrast, the density of Iba1 positive microglia was increased in Tg APP mice, and normalized following JWH chronic treatment. Both cannabinoids were effective at reducing the enhancement of COX-2 protein levels and TNF-a mRNA expression found in the AD model. Increased cortical b-amyloid (Ab) levels were significantly reduced in the mouse model by both cannabinoids. Noteworthy both cannabinoids enhanced Ab transport across choroid plexus cells in vitro. Conclusions: In summary we have shown that chronically administered cannabinoid showed marked beneficial effects concomitant with inflammation reduction and increased Ab clearanceThis work was supported by the Spanish Ministry of Science and Technology (SAF 2005-02845 to M.L.C). A.M.M-M. was recipient a fellowship from the Ministry of Education and Scienc

    Osteoinduction of Human Mesenchymal Stem Cells by Bioactive Composite Scaffolds without Supplemental Osteogenic Growth Factors

    Get PDF
    The development of a new family of implantable bioinspired materials is a focal point of bone tissue engineering. Implant surfaces that better mimic the natural bone extracellular matrix, a naturally nano-composite tissue, can stimulate stem cell differentiation towards osteogenic lineages in the absence of specific chemical treatments. Herein we describe a bioactive composite nanofibrous scaffold, composed of poly-caprolactone (PCL) and nano-sized hydroxyapatite (HA) or beta-tricalcium phosphate (TCP), which was able to support the growth of human bone marrow mesenchymal stem cells (hMSCs) and guide their osteogenic differentiation at the same time. Morphological and physical/chemical investigations were carried out by scanning, transmission electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, mechanical and wettability analysis. Upon culturing hMSCs on composite nanofibers, we found that the incorporation of either HA or TCP into the PCL nanofibers did not affect cell viability, meanwhile the presence of the mineral phase increases the activity of alkaline phosphatase (ALP), an early marker of bone formation, and mRNA expression levels of osteoblast-related genes, such as the Runt-related transcription factor 2 (Runx-2) and bone sialoprotein (BSP), in total absence of osteogenic supplements. These results suggest that both the nanofibrous structure and the chemical composition of the scaffolds play a role in regulating the osteogenic differentiation of hMSCs
    corecore